Benchmark Configuration

HP Proliant DL380 G7

CPU Two Intel Xeon X5650 at 2.66 GHz
RAM 6 x 4GB Kingston DDR3-1333 FB372D3D4P13C9ED1
Motherboard HP proprietary
Chipset Intel 5520
BIOS version P67
PSU 2 x HP PS-2461-1C-LF 460W HE

We have three servers to test. The first is our own standard off-the-shelf server, and HP DL380G7. This server is the natural challenger for the Facebook design, as it is one of the most popular and efficient general purpose servers.

As this server is targeted at a very broad public, it cannot be as lean and mean as the Open Compute servers.

Facebook's Open Compute Xeon version

CPU Two Intel Xeon X5650 at 2.66 GHz
RAM 6 x 4GB Kingston DDR3-1333 FB372D3D4P13C9ED1
Motherboard Quanta Xeon Opencompute 1.0
Chipset Intel 5500 Rev 22
BIOS version F02_3A16
PSU Power-One SPAFCBK-01G 450W

The Open Compute Xeon server is configured as close to our HP DL380 G7 as possible.

Facebook's Open Compute AMD version

CPU Two AMD Opteron Magny-Cour 6128 HE at 2.0 GHz
RAM 6 x 4GB Kingston DDR3-1333 FB372D3D4P13C9ED1
Motherboard Quanta AMD Open Compute 1.0
Chipset  
BIOS version F01_3A07
PSU Power-One SPAFCBK-01G 450W

The benchmark numbers of the AMD Open Compute server are only included for your information. There is no direct comparison possible with the other two systems. The AMD system is better equipped than the Intel, as it has more DIMM slots and uses HE CPUs.

Common Storage system

Each server has an adaptec 5085 PCIe 8x (driver aacraid v1.1-5.1[2459] b 469512) connecting to six Cheetah 300GB 15000 RPM SAS disks in a Promise JBOD J300s.

Software configuration

VMware ESXi 5.0.0 (b 469512 - VMkernel SMP build-348481 Jan-12-2011 x86_64). All vmdks use thick provisioning, independent, and persistent. Power policy is Balanced Power.

Other notes

Both servers were fed by a standard European 230V (16 Amps max.) powerline. The room temperature was monitored and kept at 23°C.

 

Power Supply Efficiency Visualized Introducing Our Open Virtualization Benchmark
Comments Locked

67 Comments

View All Comments

  • jamdev12 - Thursday, November 3, 2011 - link

    I would definitely have to agree with you on this notion. HP servers are pretty expensive when you take into account 3 year warranties and 24/7 replacement options that going with a open compute server is a nice alternative to the "I can do everything" server. Better to stick to something you can do pretty well and efficiently than I can do many things poorly.
  • haplo602 - Friday, November 4, 2011 - link

    this is an option for somebody with a custom built infrastructure and dedicated DC services. however a general purpose server CANNOT do without.

    since the server category is different (general purpose vs custom built) the HP one does well (I'd say even excelent).
  • HollyDOL - Thursday, November 3, 2011 - link

    I would be quite interested how they determined Java and C# are 2/3x slower than C++. Since it seems pretty non-corresponding with reality to me. I have seen a few tests C++ vs. Java and the differences were in matter of %. As well as C# in my experience does the same jobs little bit faster than Java and the benchmark results generally confirm it.
    few links:

    http://blog.cfelde.com/2010/06/c-vs-java-performan...
    http://reverseblade.blogspot.com/2009/02/c-versus-...
  • setzer - Thursday, November 3, 2011 - link

    I'm guessing they are comparing their algorithms and I hope they are good programmers for all the languages they tested otherwise the tests don't mean anything.
  • Taft12 - Thursday, November 3, 2011 - link

    I'm not surprised that part of the article would lead to programming language holy wars, but general benchmarks are utterly useless for Facebook. They should (and surely do) care only about performance of the compiled code and hardware platforms that run the site.
  • bji - Thursday, November 3, 2011 - link

    It's illogical to suggest that an interpreted language like Java or C# could ever approach C++ in speed when the same level of optimization is applied to each.

    In my experience, the least optimized C++ code can sometimes be approximated in performance by the best optimized Java code, depending on the task in question.

    Of course, once you spend time optimizing the C++ code then there is no way for Java to keep up.

    I have never used C# but I expect the result for it would be very similar to Java due to the similar mechanics of the language implementation.

    That being said, in many situations raw speed is not the most important factor, and Java and C# can have significant advantages in terms of mechanism of deployment, programmer productivity, etc, that can make those languages very much the best choice in some situations; which is why they are, in fact, used in those situations in which their advantages are best exploited and their weaknesses are least important.

    I think that Ruby takes the last paragraph even further; Ruby is so ungodly slow that it has to make up for it by allowing extreme productivity gains, and I expect that it must (I've never programmed in it to any significant extent), otherwise it wouldn't have any niche at all.
  • data003 - Thursday, November 3, 2011 - link

    While I've lurked this site for many years I just created an account to correct this erroneous bit of fail above.

    1. C# and Java are not interpreted languages. The are compiled at runtime into machine code.

    2. The C# JIT compiler can actually produce more efficient machine code than a compiled C++ binary.

    Since you have never used C# and clearly don't understand how it works, I'd suggest you refrain from commenting on it.
  • Jaybus - Friday, November 4, 2011 - link

    I agree that in some cases a JIT compiler can produce more efficient code, particularly when the application lends itself to runtime optimizations, however that is far from typical. Usually, for a single process, the JIT code, once compiled, will be reasonably close, though the static C/C++ code has the edge.

    But that is for the typical case. Facebook is not a typical case. Each web server is constantly starting many, many short-lived processes. Each process must start up its own copy of the code. This is where JIT fails badly to ahead-of-time compilation. It isn't the execution speed of the code after the JIT gets it compiled. The problem is the startup delay. Even with caching, the bytecode still must be compiled at least once for each new process, which in Facebook's case is millions of times. There is no such delay with ahead-of-time compilation. Therefore, Java and C# have no chance of competing in Facebook's environment.
  • erwinerwinerwin - Thursday, November 3, 2011 - link

    i wonder whether power consumption justifies them to create a new hardware w/ green power architecture and the cost they spend to having a custom build power supply running on 270volt, if it's only saves about 10-20 percent average of power consumption, rather than lets say make a corporate deal to the best power/performance servers producer on the market and modified it with water cooling (for example)???
  • Menetlaus - Thursday, November 3, 2011 - link

    Power savings absolutely justifies the work they did in customizing.

    20W less power consumption x 24/7/365 operation = 175KW.h (per server per year)
    175KW.h x $0.1/kw.h = $17.50 in power savings/year

    Just looking at the final image in the article there are easily 30 racks of 30 servers visable (30 x 30 x 17.50 =) $15 750/year in power saving.

    Since most power going into a computer ends up as wasted heat, if the 900 servers (from above) were consuming the additioanl 20W this would be ~18KW of additional heat being produced which needs to be cooled. This offers additional operational and capital cost savings due to the smaller cooling requirements.

    Water cooling may be a more efficient way of pulling heat out of the server rack, but the additional parts to move the water around the facility and to cool it adds to the total costs. Water is more efficient because it carries more heat/volume than air and with the piping the heat can be taken outside of the server room, while fans heat the air around the servers where another method of removing the heat is then required.

    The custom power supply at 270V and custom motherboard aren't really that difficult to get, as so many makers of each part already do custom designs for major PC makers (Dell/HP/etc). The difference between 208v and 270v from an electrical design standpoint isn't a big change, neither is removing parts from a motherboard.

    In short it's the economy of scale. You or I wouldn't be able to do this for a dozen personal systems as the costs would be huge per system, on the other hand for anyone managing 1'000's of servers the 20W/per adds up quick.

Log in

Don't have an account? Sign up now