Enterprise Storage Bench - Microsoft SQL UpdateDailyStats

Our next two tests are taken from our own internal infrastructure. We do a lot of statistics tracking at AnandTech - we record traffic data to all articles as well as aggregate traffic for the entire site (including forums) on a daily basis. We also keep track of a running total of traffic for the month. Our first benchmark is a trace of the MS SQL process that does all of the daily and monthly stats processing for the site. We run this process once a day as it puts a fairly high load on our DB server. Then again, we don't have a beefy SSD array in there yet :)

The UpdateDailyStats procedure is mostly reads (3:1 ratio of GB reads to writes) with 431K read operations and 179K write ops. Average queue depth is 4.2 and only 34% of all IOs are issued at a queue depth of 1. The transfer size breakdown is as follows:

AnandTech Enterprise Storage Bench MS SQL UpdateDaily Stats IO Breakdown
IO Size % of Total
8KB 21%
64KB 35%
128KB 35%

Microsoft SQL UpdateDailyStats - Average Data Rate

In the first of our two SQL tests the 710 and X25-E are far closer than they were in the Swingbench results. Although the 710 uses MLC-HET NAND, it delivers 93% of the performance of the X25-E. The SF-2281 based Vertex 3 pulls ahead, but this is obviously a consumer drive and not something I'd expect 710 customers to be cross shopping. An enterprise version of the Vertex 3 with a proven track record could be a very interesting option however.

Microsoft SQL UpdateDailyStats - Disk Busy Time

Microsoft SQL UpdateDailyStats - Average Service Time

Despite relatively close average data rates, average service time is significantly improved over the desktop 320. Furthermore the 710 cranks through IOs at nearly the same latency as Intel's X25-E. Under heavy load, the X25-E and SSD 710 are virtually indestinguishable. Once again SandForce shows its strengths quite well here.

Enterprise Storage Bench - Oracle Swingbench Enterprise Storage Bench - Microsoft SQL WeeklyMaintenance
Comments Locked

68 Comments

View All Comments

  • AnnonymousCoward - Sunday, October 2, 2011 - link

    Use a CD; that's mechanical storage.

    Flash is definitely a poor choice, since charge is slowly lost. I'm not sure about magnetic hard drives.
  • ggathagan - Monday, October 3, 2011 - link

    If you use optical media, better have it a manufactured ROM disk, as opposed to writable media.
    Even the best consumer optical media is only good for around 10 years.
  • James5mith - Monday, October 3, 2011 - link

    One thing intel and the rest of the SSD crowd by far have failed to address is the limitations of SATA for enterprise workloads. Doesn't matter how fast your drive is, on a SATA interface it will tank in truly heavy mixed I/O environments. Native SAS SSD's are needed to move the hdd form factor SSD's forward in the industry.

    That being said, in my research for an in-house project, I discovered Smart Modular. Their Optimus SAS SSD's are up to 1.6TB/drive, and at that capacity are still below $3/GB.

    To be fair, I have not gotten any of them in house to test yet, so I can't say how well they will do. But knowing the difference moving from SATA to SAS drives make in an array, I would have to imagine it will be significant when I do.

    Not to mention, from a pure density standpoint, 1.6TB 2.5" SSDs can pack more density per rack unit than 3TB 3.5" drives. Once you get to the 4TB 3.5" drives, the crown returns to slow spinning media though.
  • jhh - Monday, October 3, 2011 - link

    A conventional HDD wouldn't fare much better. The typical service life of an enterprise HDD is 5 years after a storage period of no more than 6 months. Beyond that point, the MTBF numbers aren't valid. That doesn't mean the drive will immediately fail. But, conventional HDDs aren't meant to be stored for a long period of time. The lubricating medium (grease or oil) will start moving away from where it is supposed to be, so that parts which were supposed to be lubricated won't be lubricated. The lubricant may also start oxidizing, becoming less of a lubricant. I'm not sure that a drive sitting around for 5 years will be any worse than a drive which was operating for 5 years, but I wouldn't count on either to be around for 20 years, let alone 50.

    If you want to be sure those baby pictures will still be around to show their grandkids, best to print the pictures, as we have never developed a better archival storage device. Better yet, paint it in some obscure cave in France. If you want the time capsule information to be available, print it on archival paper with archival inks.
  • rikmorgan - Tuesday, October 11, 2011 - link

    I see an article in EE Times saying Samsung is producing flash NAND on their new 20nm FAB now and expects to begin running it at 10nm next year. Just passing it on, don't know how newsworthy it is. ET Times 10/10/2011 edition.
  • Linkpl4y - Saturday, October 15, 2011 - link

    Well you've made it this far. Hopefully you've learned something on the way.

    Here's the next path on your journey. http://bit.ly/nqPUwd
  • Iketh - Monday, October 17, 2011 - link

    LOL
  • mayaw - Saturday, November 5, 2011 - link

    Because I do video graphics and its really the only thing that slows my system down for any type of reference # on tests. Even with a 10,000 RPM drive I have 12gb of mem and I upgrade my processor every 3-4 years when I can but I really never think of the hard drive. But now I am seriously thinking about getting one of these.
    Oh and by the way guys I think that the collar of his shirt is stretched out because his head is so big and it has to stretch itself out cause of the big brain he has in it unlike ppl who are arguing about someone that is wearing a t-shirt on a hard drive review.

Log in

Don't have an account? Sign up now