The Partners and the Landscape

Although NVIDIA announced the Tegra 2 at CES 2010, it wasn’t until CES 2011 that we saw a single smartphone design win. Luckily for NVIDIA, we got two wins at this year’s CES: LG and Motorola.

Here’s how the landscape breaks down. In 2011 TI will have its OMAP4, used in the BlackBerry Playbook tablet and Qualcomm has its Snapdragon QSD8660. The QSD8660 will be used in upcoming HP/Palm and HTC devices later this year.

2011 SoC Landscape
NVIDIA TI Qualcomm
Handset Partners LG
Motorola
Samsung (?)
RIM/Blackberry
Nokia (?)
Dell
HTC
Huawei
Sony Ericsson

This leaves us with Dell, Huawei, Nokia, Samsung and Sony Ericsson. Dell, Huawei and Sony Ericsson are all in Qualcomm’s camp. I’d expect that to continue. Nokia has shipped TI SoCs in the past, and I’d expect that to continue as well (if not TI, then Intel). That leaves us with Samsung. Samsung has typically shipped its own SoCs, however the recently announced Orion is still far from ready. With a hole in its roadmap, Samsung is rumored to be in NVIDIA’s camp for its next generation of Galaxy devices. And I don’t like posting rumors on AT.

All of the aforementioned SoC vendors have key design wins. NVIDIA went from being a no-show to a key player in the smartphone and tablet space. Did I mention that NVIDIA’s Tegra 2 is the reference SoC for Android 3.0 (Honeycomb)?

NVIDIA’s roadmap ahead is equally impressive. NVIDIA secrets are leaking left and right, perhaps on purpose. At MWC 2011 NVIDIA is expected to announce the successor to the Tegra 2: the NVIDIA Tegra 2 3D. And late this year or at CES 2012, NVIDIA is expected to announce Tegra 3. Two new Tegra SoCs within a 12 month period? PC gaming veterans should recognize a very familiar pattern. NVIDIA looks to be bringing back the 6-month product cycle.

Frustratingly good execution is what helped establish NVIDIA in the PC GPU industry, and ultimately what drove competitors like 3dfx and Matrox out. Based on the leaked roadmaps, it looks like NVIDIA is trying to do the same thing with smartphone SoCs.

Tegra 2, Tegra 2 3D and Tegra 3 are all 40nm parts, and only Tegra 3 is a new architecture (GPU, not CPU). This is a deviation from NVIDIA’s old 6-month cadence, but we’ll see what Tegra 3 Ultra/Tegra 4 bring in 2012. If the follow up to Tegra 3 is a 28nm shrink, followed by a new architecture with Tegra 4 by the end of 2012/beginning of 2013 then NVIDIA may truly be up to its old tricks. But for now it’s too early to tell as Tegra 2 3D looks to just be a clock bump of Tegra 2.

Based on what’s been made public thus far, the Tegra 2 3D will add glasses-free 3D support (LG has already announced that it’ll be showing off the world’s first 3D smartphone at MWC 2011). Tegra 3D will also bump clock speeds from 1GHz to 1.2GHz. This boost is important as it’ll match Qualcomm’s QSD8660, which will ship at up to 1.2GHz

Little is known about Tegra 3. Based on the timing I’m guessing it’ll still be Cortex A9, however with some performance tweaks (and a faster/beefier GPU). NVIDIA has the design wins and it has the roadmap going forward.

The GeForce ULV Performance: Android and Multithreading
Comments Locked

75 Comments

View All Comments

  • rpmrush - Monday, February 7, 2011 - link

    Solid review, but please at least use spell check. I'm not a grammar or typo freak, but there were way too many simple typos that spell check wouldn't even let you get by with. At least have someone proof read it before you publish to the public.
  • zowie - Tuesday, February 8, 2011 - link

    who can create a new type battery, who will be the richest man in the world
  • uhuznaa - Tuesday, February 8, 2011 - link

    Yeah, and until then those who manage to come up with some decent power management will be the richest...

    Seriously, every improvement on the battery front almost always just leads to devices drawing more power. It's somewhat ironic that last year's iPhone still leads the pack when it comes to battery life. Power management (that is: don't draw more power than absolutely necessary by throttling or shutting down components that aren't needed or aren't fully needed in a given moment) is hard and boring design work nobody seems to care for. And with devices and software getting replaced with the next iteration every few months this is even understandable, it's just not worth the effort, especially when nobody seems to care and benchmarks are so much more important to the crowd.
  • DanNeely - Tuesday, February 8, 2011 - link

    How is is typically played back: Cropped, or vertically resampled?
  • Wilco1 - Tuesday, February 8, 2011 - link

    Tegra 3 has 4 1.5GHz Cortex-A9's according to a leaked slide.

    That was a great article! A few minor corrections: The ARM11 VFP is fully pipelined (so it can beat the A8 on FP performance). Like the A8, Scorpion is 2-way in-order, not limited out-of-order. In-order cores issue instructions in-order but may complete them out-of-order. On the other hand, OoO cores use register renaming to issue instructions out-of-order but complete them in-order.

    Note none of the micro benchmarks used emits Neon instructions. JIT compilers don't have enough time to generate high quality code, let alone autovectorize! For proper benchmarking you will need to run native code compiled with a quality compiler (not GCC - it is still far behind the state of the art on ARM, especially Thumb-2).
  • metafor - Tuesday, February 8, 2011 - link

    I would argue with that definition of OoO. A design does not need register renaming in order to issue any arbitrary instruction OoO. It's simply a trade-off of whether to centralize hazard tracking on register accesses or on retirement.
  • PWRuser - Tuesday, February 8, 2011 - link

    Excellent review. Please, in your future reviews don't stop including gems like this one:

    "Generally while browsing I can feel when Flash ads are really slowing a page down - the 2X almost never felt that way."

    That's what matters! Including hands on observations along with a full volley of synthetic benchmarks.

    This review comes as close as humanly possible to portraying a handset's ability to readers without the said readers trying it out.

    Your attention to detail puts other reviews to shame. Keep up the good work.
  • sarge78 - Tuesday, February 8, 2011 - link

    Don't forget about ST-Ericsson's U8500 A9. They could be a major player in 2011/2012 with potential design wins from Nokia and Sony Ericsson.
  • warisz00r - Tuesday, February 8, 2011 - link

    What equipments do you use to test the phone's audio quality with?
  • phut- - Tuesday, February 8, 2011 - link

    "NVIDIA tells us that the Tegra 2 SoC is fully capable of a faster capture rate for stills and that LG simply chose 2MP as its burst mode resolution. For comparison, other phones with burst modes capture at either 1 MP or VGA. That said, unfortunately for NVIDIA, a significant technological advantage is almost meaningless if no one takes advantage of it. It'll be interesting to see if the other Tegra 2 phones coming will enable full resolution burst capture.  unfortunately for NVIDIA, a significant technological advantage is almost meaningless if no one takes advantage of it. It'll be interesting to see if the other Tegra 2 phones coming will enable full resolution burst capture.  meaningless if no one takes advantage of it. It'll be interesting to see if the other Tegra 2 phones coming will enable full resolution burst capture."

    LG have probably made this decision based on the sensitivity of the invariably minuscule sensor they will have used. Having 6 frames of 12mp is pointless if they are 12 incomprehensible megapixels due to the lacklustre sensitivity of the pixels in their chosen part.

    The kind of sensor you find delivering a meaningful burst in something like a 5D mk2 is enormous and power hungry, in comparison to an operating environment such as a phone.

Log in

Don't have an account? Sign up now