What’s Intel Doing?

From now until Q4 2010, the X25-M G2 appears to be the best we’ll get from Intel. In the 4th quarter of the year we’ll get the first 25nm ONFI 3.0 based MLC NAND SSDs from Intel.

25nm IMFT 2-bit MLC NAND Flash, 8GB, 167mm2

Available in 600GB, 300GB and 160GB configurations these drives will finally address Intel’s uncompetitive sequential write speeds. Not to mention see a healthy boost in random performance as well. The 300GB and 160GB drives will also be available in 1.8” form factors. The X25-V will also get a bump up to 80GB thanks to 25nm NAND.

Around the same time we’ll see a refresh in the X25-E space with 34nm MLC flash. Yep, you read that right. Intel appears to be going after the enterprise market with MLC flash. Which means that Intel’s third generation SSD controller is going to have write amplification under control in a serious way.

Until then, we won’t see anything new from Intel. These next couple of quarters will be spent ramping up 34nm NAND production and watching newcomer SandForce duke it out with Crucial/Micron.

Crucial/Micron RealSSD C300 - The Closest Competitor Samsung Finally Gets TRIM


View All Comments

  • neoflux - Sunday, February 21, 2010 - link

    part number is K9HCG08U1M-PCB00, but still can't find a size in nm. Reply
  • neoflux - Monday, February 22, 2010 - link

    Further research shows me that no one knows what manufacturing process size these actually are, which I find strange. No reviews include the information, there are no manufacturing spec sheets, etc. Only that they are lead-free and have 48 pins, haha.

    This all must makes me more curious. How does no one know?
  • eldiablopotato - Sunday, February 21, 2010 - link

    Both the OCZ & Crucial SSDs are nice, since my motherboard can't do 6Gbps can anyone recommend which SSD to get? I'm thinking Crucial SSD, but then again I'm no expert on SSDs like Anand. :P

    Feedback welcomed.
  • nivek - Sunday, February 21, 2010 - link

    OCZ says they can't get any more sandforce controllers at a low price point. But how does OWC get the same controller for their Mercury Extreme Enterprise SSD. OWC 100GB SSD is priced the same as OCZ Vertex LE 100GB!

  • Per Hansson - Sunday, February 21, 2010 - link

    Just curious about the missing capacitor, will there not be a big risk of dataloss incase of power outage?

    Do you know what design changes where done to get rid of the capacitor, where any additional components other than the capacitor removed?

    Because it can be bought in low quantities for a quite ok retail price of £16.50 here;
  • sjobal - Sunday, February 21, 2010 - link

    Hi Anand,

    I'm curious to know what SSD is most suitable for a mac. Since OSX does not support TRIM, some sort of garbage collection has to be done within the drive (firmware) or a software tool has to be available for OSX.
    Is this something you'll look into in forthcoming reviews?

    Best regards!
  • AnnonymousCoward - Saturday, February 20, 2010 - link


    How can you benchmark in so many different ways, and yet end up with hardly any relevant information? All those PCMark graphs don't tell me squat. Your AnandTech Storage Bench is flawed, since (as your last article found) the SandForce uses compression and IOPS don't equal bandwidth! Why does the user care about IOPS?? Do they care about IOPS of their graphics cards? Or CPU?

    With CPUs, you measure things like encoding time and game framerates. Things that matter!

    This is the 3rd time I'm posting this. Refer to the last time: http://tinyurl.com/yjcr5vm">http://tinyurl.com/yjcr5vm
  • Zoomer - Sunday, February 21, 2010 - link

    It's a waste of time to do what you're suggesting. The point of SSDs is to improve the user response time.

    Encoding time? It would likely be virtually identical due to the modern pre-fetching algorithms in place.

    Game framerates won't really be affected since the average of 3 runs is taken. After the first run, most everything will be cached, either in hardware or in software by the os in mem.
    In the real world, you would expect to see less dips in fps (min fps will be higher), assuming it is a fresh first run.
  • bradley - Sunday, February 21, 2010 - link

    The point is germane. New SSD benchmarks are required to measure real world performance. Some of the current benchmarks end up limited to measuring nothing more than cache speed. IOPS is impractical and demonstrates nothing indicative regarding real world performance.

    the Problem with Write IOPS - in flash SSDs
  • erple2 - Sunday, February 21, 2010 - link

    Ordinarily, I'd agree with you. However, the point of the article was to point out the problems with "older" benchmarks that would simply look at, in a vacuum, IOPS of a drive was inconsistent at best, and misleading at worst. In the case of Anand's testing methodologies, you see that the IOPS numbers he comes up with are, in fact, the "worst case scenario" listed for SSD's in the article you linked to.

    Until the giant Meltdown of SSD's in Anand's article (http://www.anandtech.com/storage/showdoc.aspx?i=35...">http://www.anandtech.com/storage/showdoc.aspx?i=35..., testing methodologies that benchmark reviewers were using were definitely perfectly suited to the problems with SSD's, namely the write-erase cycle being specifically excluded from the benchmarks. That indicated the main problem storagesearch.com referred to in the above linked article.

    Anand has since changed his benchmark methodology for all SSD's to be a "polluted" SSD - he does not simply wipe the drive clean, then benchmark. He first fills the drive with data, then does a format (which does NOT wipe the drive clean - you still have the write-erase cycle to contend with), then runs benchmarks.

    The other thing to look at is that the benchmarks that Anand looks at are, in fact, consistent. Saying that one drive attains 600 IOPS on "Anand's light StorageBench" where another attains 500 IOPS _ON THE SAME BENCHMARK_ does, in fact, give you a reasonably accurate comparison. The trouble you'll get into is if you state "Drive X gets 5000 IOPS, but Drive Y gets 9000 IOPS", not mentioning the actual benchmark used, or even worse, cherry-picking the benchmarks to favor the particular Drive. Then, you have to dig down and figured out whether the benchmarks that gave you "5000 IOPS" was, in fact, properly executed - is that really indicative of the performance of the drive, or only in a very tightly controlled environment to maximize performance numbers? However, that's a question you always have to look at regardless of what you're testing, be it video cards (3D Vantage doesn't give you an accurate picture of how well the card will perform in some particular scenario), CPU's (SPECint or SPECfp give you minimal information about how a CPU performs in a large database environment) or other devices.

    So really, I think that the point the article in storagesearch is hammering at you should be wary of reading more into generic IOPS as a benchmark for these SSD's as is simply stated.

    So, in conclusion, I disagree about 80% with what you have written.

    (minor "edit"):
    So I've re-read the GGP post - while it is true that IOPS as a number means nothing to me, it also winds up being true that posting a Bandwidth number would also be more or less worthless to me - what is important is the general ranking of these devices in the same benchmark. The benchmark is measuring the _relative_ performance of each of the drives in the same sequence of tests. Taking conclusions like "this drive gets 600 in a benchmark and that one gets 400 in another benchmark" ultimately fails.

    (BTW, Anandtech staff, please fix the fact that I can't use any "rich" text in these posts)

Log in

Don't have an account? Sign up now