Enter the Poorly Designed MLC

The great thing about everyone making MLC drives based on the same design is it helps drive cost down, which gives us a very affordable product. After rebate you can buy a 64GB OCZ Core SSD, an MLC drive, for $240 from Newegg. Compared to the $1000+ that 64GB SSDs were selling for a year ago, this is good cost savings. The bad thing about everyone using the same design however is if there's a problem that affects one of the drives, it affects all of them. And indeed, there is a problem.

The symptoms are pretty obvious: horrible stuttering/pausing/lagging during the use of the drive. The drive still works, it's just that certain accesses can take a long time to complete. It's a lot like using a slow laptop hard drive and trying to multitask, everything just comes to a halt.

I first discovered this problem a couple of months ago when I started work on an article looking at the performance of a SSD in a Mac Pro as a boot/application drive. Super Talent sent me one of its 3.5” drives, which I had assumed was a SLC drive. Application launches were ridiculously fast, but I noticed something very strange when I was using my machine. Starting to type in a document, or sending an IM, or even opening a new tab in Safari would sometimes be accompanied by a second-long pause. At first I assumed it was a problem with my drive or with the controller, or perhaps a combination of the drive, the SATA controller on the Mac Pro’s motherboard and OS X itself. I later found out it was an MLC drive and thus began my investigation.

SuperTalent had received a lot of attention for its SSDs, and rightfully so - they were starting to be affordable. OCZ however quickly took the spotlight with its Core SSD, finally bringing the price of a 64GB MLC SSD to below $300. Users flocked to the Core and other similarly priced drives, because if you looked at the marketed specs of the drive you were basically getting greater than SLC performance, at a fraction of the cost:

Advertised Specs OCZ Core (MLC) OCZ (SLC)
Read Up to 143MB/s Up to 100MB/s
Write Up to 93MB/s Up to 80MB/s
Seek < 0.35ms unlisted
Price < $300 > $600

 

However the real world performance didn't match up.

Let's start with the types of benchmarks that we usually see run in SSD reviews, here's a quick run of PCMark Vantage's HDD. Vantage paints the Core as a screamer:

  PCMark Vantage HDD Test
OCZ Core (JMicron JMF602, MLC) 8117
OCZ (Samsung, SLC) 12143
Western Digital VelociRaptor (10,000 RPM SATA) 6325

 

Digging a bit deeper we only see one indication of a problem, performance in the Media Center test is significantly slower than the VelociRaptor - but overall it's much faster, what could one test actually mean?

  Windows Defender Gaming Picture Import Vista Startup Windows Movie Maker Media Center WMP App Loading
OCZ Core (JMicron JMF602, MLC) 48.1MB/s 72.5MB/s 90.4MB/s 47.9MB/s 23.2MB/s 33MB/s 17.8MB/s 20.3MB/s
OCZ (Samsung, SLC) 69.3MB/s 71.8MB/s 86.9MB/s 63MB/s 43.7MB/s 65.6MB/s 33.8MB/s 39.9MB/s
Western Digital VelociRaptor (10,000 RPM SATA) 27.5MB/s 20.1MB/s 59.0MB/s 22.9MB/s 58.5MB/s 113.3MB/s 15.2MB/s 7.6MB/s

 

If we turn to SYSMark however, the picture quickly changes. The OCZ SLC drive is now 30% faster than the MLC drive, and performance in the Video Creation suite is literally half on the MLC drive. Something is amiss.

  SYSMark 2007 Overall E-Learning Video Creation Productivity 3D
OCZ Core (JMicron JMF602, MLC) 138 143 111 134 168
OCZ (Samsung, SLC) 177 161 200 178 172
Western Digital VelociRaptor (10,000 RPM SATA) 179 155 222 177 169

 

The Generic SSD Delving Deeper
POST A COMMENT

96 Comments

View All Comments

  • aeternitas - Thursday, September 11, 2008 - link

    Converting all your DVDs to divx is a silly idea. Why would you want to lose dynamic range and overall quality (no matter the settings) for a smaller movie size when 1TB costs 130$?

    SSD = Preformance (when done right)
    HHD = Storage.
    Reply
  • johncl - Tuesday, September 09, 2008 - link

    Noise isnt a big problem on a 3.5" in a media pc as the other poster states. But heat can be a problem, especially if you plan on passively cool everything else in the computer. An SSD will solve both problems, but only if the SSD is the only disk in the system. From what I understand you want to have both in yours which makes sense since movies/music occupy a lot of space. In that case you will not experience any improved performance since the media would have to be read off the mechanical drive anyway.

    Your best bet would be to build yourself a small media server and put all noisy hot mechanical disks in that and use small SSDs on your media pc (and indeed any other pc). That way you get the best of both worlds, fast response on application startup/OS boot, silent and no heat - as well as a library of media. You would probably have to use a media frontend that caches information about all media on your server though so it doesnt have to wait on server harddisk spinup etc for every time you browse your media. Perhaps Vista Media Center already does this?
    Reply
  • mindless1 - Thursday, September 11, 2008 - link

    An SSD will not "solve" a heat problem. The hard drive adds only a small % of heat to a system and being lower heat density it has one of the less difficult requirements for cooling.


    Speed of the HTPC shouldn't be an issue, unlike a highly mixed use desktop scenario all one needs is to use stable apps without memory leaks then they can hibernate to get rid of the most significant boot-time waiting. Running the HTPC itself the OS performance difference would be trivial and the bitrate for the videos is easily exceeding by either storage type or an uncongested LAN.
    Reply
  • piroroadkill - Tuesday, September 09, 2008 - link

    To be honest most decent HDDs don't make significant noise anyway, even further quelled by grommets or suspending the drive.

    Also, the reads will occur on the drive you're reading the movie from - so if you plan to use an external HDD as the source, this will make no difference whatsoever.
    Reply
  • dickeywang - Tuesday, September 09, 2008 - link

    Imaging you have a 80GB SSD, with 75GB been already occupied by some existing data (OS, installed software, etc), so you only have 10GB space left, now lets say you write and then erase 100GB/day on this SSD, shouldn't the 100GB/day data all be written on the 5GB space? So each cell would be written 100GB/5GB=20cycle/day, so you will reach the 10000cycle/cell limit within less than 18months.
    Can someone tell me if the analysis above is correct? I guess when they say "100GB/day for 5 years", they should really take into account how much storage space that is un-occupied on the SSD, right?
    Reply
  • johncl - Tuesday, September 09, 2008 - link

    A good wear leveling algorithm can move about "static" blocks so that their cells are also available for wear. I do not know if the current implementations use this though. Anyone know this? Reply
  • Lux88 - Tuesday, September 09, 2008 - link

    I remember reading a number of SSD reviews, but it's first time I read about the pauses. Indeed, quick search revealed 5 articles, starting from May 2007, but the conclusions only mentioned a high price and a small capacity as drawbacks. Nothing about freezing nor pauses. Some of these 5 probably were SCL-drives, some MLC.

    It's funny how a simple multitasking test can reveal an Achille's heel of large group of products, just when a product appears that doesn't suffer from this particular drawback.

    Overall good article and good info. So good that all the previous articles on the matter of SSDs on this site seem bad in comparison. Thanks for the info anyway, better late than never ;).
    Reply
  • eva2000 - Tuesday, September 09, 2008 - link

    If the OCZ Core controller does indeed have 16KB on chip cache for read/writes maybe that's the problem as OCZ Core pdf states for their SSD

    "each page contains 4 Kbytes of data, however, because of the parallelism at the back end of the controller, every access includes simultaneous opening of 16 pages for a total accessible data contingent of 64 Kbytes"

    ????
    Reply
  • araczynski - Tuesday, September 09, 2008 - link

    looks quite promising. maybe within about 2 years they'll get the bugs worked out, a more realistic price, and an extended life span, and i'll replace my regular drives. Reply
  • yyrkoon - Tuesday, September 09, 2008 - link

    "No one really paid much attention to Intel getting into the SSD (Solid State Disk) business. We all heard the announcements, we heard the claims of amazing performance, but I didn't really believe it. After all, it was just a matter of hooking up a bunch of flash chips to a controller and putting them in a drive enclosure, right? "

    You mean you did not pay attention? I know I did, because Intel has always been serious with things of this nature. That and they are partnered with Crucial(Micron) right ?. . . Now if this was some attempt at sarcasm, or a joke . . .

    Seriously, and I mean VERY seriously, I was excited when Anandtech 'reported' that Intel/Micron were going to get into the SSD market. After all affordable SSDs are very desirable, never mind affordable/very good performing SSDs. That, and I knew if Intel got into the market, that we would not have these half-fast implementations that we're seeing now from these so called 'SSD manufactures'. Well, even Intel is not impervious to screw ups, but they usually learn by their mistakes quickly, and correct them. Micron (most notably Crucial) from my experience does not like to be anything but the best in what they do, so to me this seemed like a perfect team, in a perfect market. Does this mean I think Micron is the best ? Not necessarily. Lets me just say that after years of dealing with Crucial, I have a very high opinion of Crucial/Micron.

    "What can we conclude here? SSDs can be good for gaming, but they aren't guaranteed to offer more performance than a good HDD; and Intel's X25-M continues to dominate the charts."

    Are we reading the same charts ? These words coming from the mouth of someone who sometimes mentions even the most minuscule performance difference as being a 'clear winner' ? Regardless, I think it *is* clear to anyone willing to pay attention to the charts that the Intel SSD "dominates". Now whether the cost of admission is worth this performance gain is another story altogether. I was slightly surprised to see a performance gain in FPS just by changing HDDS, and to be honest I will remain skeptical. I suppose that some data that *could* effect FPS performance could be pulled down while the main game loop is running.

    Either way, this is a good article, and there was more than enough information here for me(a technology junky). Now lets hope that Intel lowers the cost of these drives to a more reasonable price(sooner rather than later). The current price arrangement kind of reminds me of CD burner prices years ago.
    Reply

Log in

Don't have an account? Sign up now