TR 7000 vs. Intel: Encoding

One of the interesting elements of modern processors is encoding performance. This covers two main areas: encryption/decryption for secure data transfer and video transcoding from one video format to another.

In the encrypt/decrypt scenario, how data is transferred and by what mechanism is pertinent to on-the-fly encryption of sensitive data - a process by which more modern devices are leaning towards for improving software security.

We've updated our list of encoding benchmarks for our 2024 CPU suite to include some of the most relevant and recent codecs, such as AV1, HEVC, and VP9. Not only this, but we have also included FLAC audio encoding as well as WebP2 image encoding into the mix to show not only how the latest processors perform with these codecs but also to show discrepancies in performance throughout the different segments.

We are using DDR5-5200 RDIMM memory on the Ryzen Threadripper 7980X and 7970X as per JEDEC specifications. For Intel's Xeon W9-3495X, we are using DDR5-4800 RDIMM memory as per Intel's JEDEC specifications. It should be noted that both platforms are run with their full allocation of memory channels, eg, TR7000 in 4-channel and Sapphire Rapids in 8-channel.

Below are the settings we have used for each platform:

  • DDR5-5200 RDIMM - AMD Threadripper 7000
  • DDR5-4800 RDIMM - Intel Xeon Sapphire Rapids WS
  • DDR5-5600B CL46 - Intel 14th Gen
  • DDR5-5200 CL44 - Ryzen 7000

(3-1) WebP2 Image Encode: Quality 75, Compression Effort 7

(3-1b) WebP2 Image Encode: Quality 100, Lossless Compression

(3-2): SVT AV1 Encoding: Bosphorus 1080p, Fastest Preset

(3-2b): SVT AV1 Encoding: Bosphorus 4K, Fastest Preset

(3-3) SVT AV1 Encoding: Bosphorus 1080p, Mid-Speed Preset

(3-3b) SVT AV1 Encoding: Bosphorus 4K, Mid-Speed Preset

(3-5) SVT-HEVC Encoding: Bosphorus 1080p, Higher Quality

(3-5b) SVT-HEVC Encoding: Bosphorus 4K, Higher Quality

(3-6) SVT-VP9 Encoding: Bosphorus 1080p, Quality Optimized

(3-6b) SVT-VP9 Encoding: Bosphorus 4K, Quality Optimized

(3-7) FFmpeg 6.0 Benchmark: libx264 Encode, Live Scenario

(3-7b) FFmpeg 6.0 Benchmark: libx264 Encode, Live Scenario

(3-7c) FFmpeg 6.0 Benchmark: libx265 Encode, Live Scenario

(3-7d) FFmpeg 6.0 Benchmark: libx265 Encode, Live Scenario

(3-8) FLAC Audio Encoding 1.4: WAV to FLAC

(3-9) 7-Zip 22.01 - Compression Rating

(3-9b) 7-Zip 22.01 - Decompression Rating

Starting with the WebP2 Image encoding tests, the Ryzen Threadripper 7980X and 7970X perform well compared to the other chips we've tested. Interestingly, in the SVT AV1 encoding using the fastest preset, the desktop chips with the faster core frequencies win. The tables turn using the mid preset, with both Threadripper 7000 chips sitting on top of the charts.

In the SVT-HEVC benchmark, the Intel Xeon W9-3495X sits at the top of the list, and the same is prevalent in the VP9 encoding benchmark. In the FFmpeg 6.0 benchmark with x264 and x265, the desktop processors with the faster cores win in this situation, with the Core i9-14900K and the 6.0 GHz boost core frequencies playing a bigger hand than simply having more cores.

Looking at 7-Zip performance, both the Threadripper 7980X and 7970X are vastly superior to the Intel Xeon W9-3475X and the flagship desktop chips, including the Core i9-14900K, Ryzen 9 7950X, and Ryzen 9 7950X3D.

TR 7000 vs. Intel: Power and Compile TR 7000 vs. Intel: Rendering
Comments Locked

66 Comments

View All Comments

  • GeoffreyA - Thursday, November 23, 2023 - link

    Yes. Deceptive everything.
  • boozed - Monday, November 20, 2023 - link

    "While it's clear in multi-threaded workloads such as rendering, the Ryzen Threadripper 7980X and 7970X are more potent with higher core counts, there are certain situations where the current desktop flagship processors still represent a better buy."

    Good to know if I ever start playing Dwarf Fortress?
  • FatFlatulentGit - Monday, November 20, 2023 - link

    One test I'd like to see is encoding 4+ videos at once. One 4K AV1 or HEVC encode is not going to top out all of the cores on the 7980X, but enough parallel encodes will blast the thing.

    I also wouldn't mind seeing how they stack up against the WX series, especially in regard to RAM channels when the CPU is saturated.
  • garblah - Tuesday, November 21, 2023 - link

    So, even with a 5,000 dollar CPU, encoding an hour of 1080p AV1 video at 30fps with the medium quality preset would take nearly 2 hours? I guess AV1 software encoding is still pretty slow.
  • GeoffreyA - Tuesday, November 21, 2023 - link

    Just raising the presets a few steps can cut down the time considerably, without too much of a loss of quality. On my system, SVT-AV1's fastest preset, 12, approaches x264 preset medium, if I remember right, and the quality is still better than the latter.
  • GeoffreyA - Tuesday, November 21, 2023 - link

    And preset 6, which is medium, is roughly similar to libaom's fastest, cpu-used 8.
  • FatFlatulentGit - Tuesday, November 21, 2023 - link

    A single AV1 encode is not going to saturate 64/128 cores. The advantage is being able to do multiple simultaneous encodes.
  • GeoffreyA - Thursday, November 23, 2023 - link

    Or splitting into scene-based chunks.
  • SanX - Wednesday, November 22, 2023 - link

    These new processors are just the BS and utter ripoff. Look at supercomputers which use very similar processors: You can find there a lot of different models and test them. What these tests show is that during simulations they almost always stay around base frequency which is for this article's 64-core 2.5GHz processor equivalent to 32-cores of standard consumer ~5 Ghz 7950x which costs ~$500. So you pay 10x money for just the 2x increase in performance. What is 2x increase in performance ? NOTHING! When you compare computers, remember, you compare not a salary, game fps or your weight loss :) stop thinking this way, in computers, and specifically in supercomputers it is 3-10x when things are really different. Typically if usual PC is really not enough for you then the next step you need is 10x or 100x more, or even 1000x. So these hell expensive toys have no economic sense for almost everyone. Just get supercomputer time if you need more than your PC gives you and stop wasting your money. By the way these processors made off $10 chiplets cost probably $100 to manufacture
  • Thunder 57 - Wednesday, November 22, 2023 - link

    You're all over the place. First of all a 7950X has 16 cores. Even if tweo of those could match a 64 core TR (it won't), you'd need all of the other parts associated with a second computer. You are also forgetting about PCIe and memory bandwidth.

    Then you say maybe $100 to manufacture. You know how much it costs to develop these chips? AN insane amount of money. You make it sound like AMD is selling a $100 widget for $5000 because they can. People will buy these for $1000's. If they didn't sell, AMD would have to lower prices. The market will determine what is "fair".

Log in

Don't have an account? Sign up now