Power Behaviour: No Real TDP, but Wide Range

Last year when we reviewed the M1 inside the Mac mini, we did some rough power measurements based on the wall-power of the machine. Since then, we learned how to read out Apple’s individual CPU, GPU, NPU and memory controller power figures, as well as total advertised package power. We repeat the exercise here for the 16” MacBook Pro, focusing on chip package power, as well as AC active wall power, meaning device load power, minus idle power.

Apple doesn’t advertise any TDP for the chips of the devices – it’s our understanding that simply doesn’t exist, and the only limitation to the power draw of the chips and laptops are simply thermals. As long as temperature is kept in check, the silicon will not throttle or not limit itself in terms of power draw. Of course, there’s still an actual average power draw figure when under different scenarios, which is what we come to test here:

Apple MacBook Pro 16 M1 Max Power Behaviour

Starting off with device idle, the chip reports a package power of around 200mW when doing nothing but idling on a static screen. This is extremely low compared to competitor designs, and is likely a reason Apple is able achieve such fantastic battery life. The AC wall power under idle was 7.2W, this was on Apple’s included 140W charger, and while the laptop was on minimum display brightness – it’s likely the actual DC battery power under this scenario is much lower, but lacking the ability to measure this, it’s the second-best thing we have. One should probably assume a 90% efficiency figure in the AC-to-DC conversion chain from 230V wall to 28V USB-C MagSafe to whatever the internal PMIC usage voltage of the device is.

In single-threaded workloads, such as CineBench r23 and SPEC 502.gcc_r, both which are more mixed in terms of pure computation vs also memory demanding, we see the chip report 11W package power, however we’re just measuring a 8.5-8.7W difference at the wall when under use. It’s possible the software is over-reporting things here. The actual CPU cluster is only using around 4-5W under this scenario, and we don’t seem to see much of a difference to the M1 in that regard. The package and active power are higher than what we’ve seen on the M1, which could be explained by the much larger memory resources of the M1 Max. 511.povray is mostly core-bound with little memory traffic, package power is reported less, although at the wall again the difference is minor.

In multi-threaded scenarios, the package and wall power vary from 34-43W on package, and wall active power from 40 to 62W. 503.bwaves stands out as having a larger difference between wall power and reported package power – although Apple’s powermetrics showcases a “DRAM” power figure, I think this is just the memory controllers, and that the actual DRAM is not accounted for in the package power figure – the extra wattage that we’re measuring here, because it’s a massive DRAM workload, would be the memory of the M1 Max package.

On the GPU side, we lack notable workloads, but GFXBench Aztec High Offscreen ends up with a 56.8W package figure and 69.80W wall active figure. The GPU block itself is reported to be running at 43W.

Finally, stressing out both CPU and GPU at the same time, the SoC goes up to 92W package power and 120W wall active power. That’s quite high, and we haven’t tested how long the machine is able to sustain such loads (it’s highly environment dependent), but it very much appears that the chip and platform don’t have any practical power limit, and just uses whatever it needs as long as temperatures are in check.

  M1 Max
MacBook Pro 16"
Intel i9-11980HK
MSI GE76 Raider
  Score Package
Power
(W)
Wall Power
Total - Idle
(W)
Score Package
Power
(W)
Wall Power
Total - Idle
(W)
Idle   0.2 7.2
(Total)
  1.08 13.5
(Total)
CB23 ST 1529 11.0 8.7 1604 30.0 43.5
CB23 MT 12375 34.0 39.7 12830 82.6 106.5
502 ST 11.9 11.0 9.5 10.7 25.5 24.5
502 MT 74.6 36.9 44.8 46.2 72.6 109.5
511 ST 10.3 5.5 8.0 10.7 17.6 28.5
511 MT 82.7 40.9 50.8 60.1 79.5 106.5
503 ST 57.3 14.5 16.8 44.2 19.5 31.5
503 MT 295.7 43.9 62.3 60.4 58.3 80.5
Aztec High Off 307fps 56.8 69.8 266fps 35 + 144 200.5
Aztec+511MT   92.0 119.8   78 + 142 256.5

Comparing the M1 Max against the competition, we resorted to Intel’s 11980HK on the MSI GE76 Raider. Unfortunately, we wanted to also do a comparison against AMD’s 5980HS, however our test machine is dead.

In single-threaded workloads, Apple’s showcases massive performance and power advantages against Intel’s best CPU. In CineBench, it’s one of the rare workloads where Apple’s cores lose out in performance for some reason, but this further widens the gap in terms of power usage, whereas the M1 Max only uses 8.7W, while a comparable figure on the 11980HK is 43.5W.

In other ST workloads, the M1 Max is more ahead in performance, or at least in a similar range. The performance/W difference here is around 2.5x to 3x in favour of Apple’s silicon.

In multi-threaded tests, the 11980HK is clearly allowed to go to much higher power levels than the M1 Max, reaching package power levels of 80W, for 105-110W active wall power, significantly more than what the MacBook Pro here is drawing. The performance levels of the M1 Max are significantly higher than the Intel chip here, due to the much better scalability of the cores. The perf/W differences here are 4-6x in favour of the M1 Max, all whilst posting significantly better performance, meaning the perf/W at ISO-perf would be even higher than this.

On the GPU side, the GE76 Raider comes with a GTX 3080 mobile. On Aztec High, this uses a total of 200W power for 266fps, while the M1 Max beats it at 307fps with just 70W wall active power. The package powers for the MSI system are reported at 35+144W.

Finally, the Intel and GeForce GPU go up to 256W power daw when used together, also more than double that of the MacBook Pro and its M1 Max SoC.

The 11980HK isn’t a very efficient chip, as we had noted it back in our May review, and AMD’s chips should fare quite a bit better in a comparison, however the Apple Silicon is likely still ahead by extremely comfortable margins.

Huge Memory Bandwidth, but not for every Block CPU ST Performance: Not Much Change from M1
Comments Locked

493 Comments

View All Comments

  • vlad42 - Monday, October 25, 2021 - link

    And there you go making pure speculative claims without any factual basis for the quality of the ports. I could similarly make absurd claims such as every benchmark Intel's CPU looses is because that is just a bad port. Provide documented evidence it is a bad port as you are the one making that claim (and not bad Apple drivers, thermal throttling because they would not turn on the fans until the chip hit 85C, etc.).

    Face it, in the real world benchmarks this article provides, AMD's and Nvidia's GPUs are roughly 50% faster than Apple's M1 Max GPU.

    Also, a full node shrink and integrating a dGPU into the SOC would make it much more energy efficient. The node shrink should be obvious and this site has repeatedly demonstrated the significant energy efficiency benefits of integrating discrete components, such as GPUs, into the SOCs.
  • jospoortvliet - Wednesday, October 27, 2021 - link

    Well they are 100% sure bad ports as this gpu didn't exist. The games are written for a different platform, different gpus and different drivers. That they perform far from optimal must be obvious as fsck - driver optimization for specific games and game optimization for specific cards, vendors and even drivers usually make the difference between amd and nvidia - 20-50% between entirely unoptimized (this) and final is not even remotely rare. So yeah this is an absolute worst case. And Aztec Ruins shows the potential when (mildly?) optimized - nearly 3080 levels of performance.
  • Blastdoor - Monday, October 25, 2021 - link

    Apple's GPU isn't magic, but the advantage is real and it's not just the node. Apple has made a design choice to achieve a given performance level through more transistors rather than more Hz. This is true of both their CPU and GPU designs, actually. PC OEMs would rather pay less for a smaller, hotter chip and let their customers eat the electricity costs and inconvenience of shorter battery life and hotter devices. Apple's customers aren't PC OEMs, though, they're real people. And not just any real people, real people with $$ to spend and good taste .
  • markiz - Tuesday, October 26, 2021 - link

    When you say "Apple has made a design choice", who did in fact make that choice? Can it e attributed to an individual?
    Also, why is nobody else making this choice? Simply economics, or other reasons?
  • markiz - Tuesday, October 26, 2021 - link

    Apple customers having $$ and taste, at a time where 60% of USA has an iphone can not exactly be true. Every loser these days has an iphone.

    I know you were likely being specific in regards to Macbooks Pros, so I guess both COULD be true, but does sound very bad to say it.
  • michael2k - Monday, October 25, 2021 - link

    That would be true if there were and AMD or NVIDIA GPU manufactured on TSMC N5P node.

    Since there isn't, a 65W Apple GPU will perform like a 93W AMD GPU at N7, and slightly higher still for an NVIDIA GPU at Samsung 8nm.

    That is probably the biggest reason they're so competitive. At 5nm they can fit far more transistors and clock them far lower than AMD or NVIDIA. In a desktop you can imagine they can clock higher 1.3GHz to push performance even higher. 2x perf at 2.6GHz, and power usage would only go up from 57W to 114W if there is no need to increase voltage when driving the GPU that fast.
  • Wrs - Monday, October 25, 2021 - link

    All the evidence says M1 Max has more resources and outperforms the RTX 3060 mobile. But throw crappy/Rosetta code at the former and performance can very well turn into a wash. I don't expect that to change as Macs are mainly mobile and AAA gaming doesn't originate on mobile because of the restrictive thermals. It's just that Windows laptops are optimized for the exact same code as the desktops, so they have an easy time outperforming the M1's on games originating on Windows.

    When I wanna game seriously, I use a Windows desktop or a console, which outperforms any laptop by the same margin as Windows beats Mac OS/Rosetta in game efficiency. TDP is 250-600w (the consoles are more efficient because of Apple-like integration). Any gaming I'd do on a Windows laptop or an M1 is just casual. There are plenty of games already optimized for M1 btw - they started on iOS. /shrug
  • Blastdoor - Tuesday, October 26, 2021 - link

    As things stand now, the Windows advantage in gaming is huge, no doubt.

    But any doubt about Apple's commitment to the Mac must surely be gone now. Apple has invested serious resources in the Mac, from top to bottom. If they've gone to all the work of creating Metal and these killer SOCs, why not take one more step and invest some money+time in getting optimized AAA games available on these machines? At this point, with so many pieces in place, it almost seems silly not to make that effort.
  • techconc - Monday, October 25, 2021 - link

    It's hard to speak about these GPUs for gaming performance when the games you choose to run for your benchmark are Intel native and have to run under emulation. That's not exactly a showcase for native gaming performance.
  • sean8102 - Tuesday, October 26, 2021 - link

    What games could they have used? The only two somewhat demanding ARM native macOS games are WoW, and Baldur's Gate 3.

Log in

Don't have an account? Sign up now