Conclusion & End Remarks

Today’s investigation into the new A15 is just scratching the tip of the iceberg of what Apple has to offer in the new generation iPhone 13 series devices. As we’re still working on the full device review, we got a good glimpse of what the new silicon is able to achieve, and what to expect from the new devices in terms of performance.

On the CPU side of things, Apple’s initial vague presentation of the new A15 improvements could either have resulted in disappointment, or simply a more hidden shift towards power efficiency rather than pure performance. In our extensive testing, we’re elated to see that it was actually mostly an efficiency focus this year, with the new performance cores showcasing adequate performance improvements, while at the same time reducing power consumption, as well as significantly improving energy efficiency.

The efficiency cores of the A15 have also seen massive gains, this time around with Apple mostly investing them back into performance, with the new cores showcasing +23-28% absolute performance improvements, something that isn’t easily identified by popular benchmarking. This large performance increase further helps the SoC improve energy efficiency, and our initial battery life figures of the new 13 series showcase that the chip has a very large part into the vastly longer longevity of the new devices.

In the GPU side, Apple’s peak performance improvements are off the charts, with a combination of a new larger GPU, new architecture, and the larger system cache that helps both performance as well as efficiency.

Apple’s iPhone component design seems to be limiting the SoC from achieving even better results, especially the newer Pro models, however even with that being said and done, Apple remains far above the competition in terms of performance and efficiency.

Overall, while the A15 isn’t the brute force iteration we’ve become used to from Apple in recent years, it very much comes with substantial generational gains that allow it to be a notably better SoC than the A14. In the end, it seems like Apple’s SoC team has executed well after all.

GPU Performance - Great GPU, So-So Thermals Designs
Comments Locked

204 Comments

View All Comments

  • Ppietra - Thursday, October 7, 2021 - link

    and support costs would be almost nothing compared with the extra revenue. Certainly you don’t expect billions of dollars in expenses just to keep drivers updated
  • michael2k - Thursday, October 7, 2021 - link

    You're assuming there exists 200 million customers willing to pay an extra $100 or so for Android smartphones. The cost isn't solely going to go to Apple, if Samsung used a premium part they're going to want to profit from it too!

    ASP for Android phones is $261 or so, which means the vast majority of Android phones will be cheaper too:
    https://www.statista.com/statistics/951537/worldwi...
  • Nicon0s - Thursday, October 7, 2021 - link

    >but will it be a deterrent for OEMs?

    What type of question is that? Prices are extremely important especially when we talk about products that are expensive from the start, being more expensive would definitely be a problem.

    >Would a couple hundred quid added to the BOM and passed on the customer dent the overall sales of these top end smartphones?

    Yes it definitely would.

    >will probably be ok paying 1700 for a phone that almost twice as fast.

    Not really twice as fast and the advantage would mostly be visible in benchmarks. In this case I would definitely buy the same phone with a Qualcomm SOC at a cheaper price. It's not like the phone with Snapdragon SOCs can't handle the OS, photo processing and so on.

    >To summarise, i dont believe cost will be a deterrent for OEMs

    Taking in consideration how sensible to prices they are they would definitely be discouraged.
  • techconc - Tuesday, October 5, 2021 - link

    “ All in all an A15 would probably cost an Android OEM a few times more than a Qualcomm SOC. So the real question is: would it be worth it?”

    Probably not. Most Android users don’t buy flagship level devices. Developers typically develop for the lowest common denominator. I suspect most of the benefits would go unused.
  • Jetcat3 - Tuesday, October 5, 2021 - link

    Thanks so much for this! It’s great to see Apple focus on improving efficiency across the board.

    I literally can’t wait to see the display and battery analysis as I’ve noticed much better touch sensitivity with the move to Y-Octa AMOLED panels with the 13 Pro specifically.
  • easp - Tuesday, October 5, 2021 - link

    I'm interested to see how this all plays out in their Desktop-class variants.
  • zodiacfml - Tuesday, October 5, 2021 - link

    No fan of Apple but this is just one of the reasons Android devices should not charge the same price as Apple. The SoC has plenty of potential only for Apple to power and tdp limit it on the iPhone, check it yourself iPad Mini testing videos on youtube.
  • theblitz707 - Wednesday, October 6, 2021 - link

    We dont need to make conclusions about socs when games are tested. Games are just games. And i bet most people looking at these sustained figures, efficiency figures etc. just try to understand how better it will be in games. So you could include a few well known games. Your audience would grow a lot too.
  • LiverpoolFC5903 - Wednesday, October 6, 2021 - link

    I think the issue is, you cannot reasonably draw a conclusion given the variables involved. For example, two devices may be able to run genshin impact at 60 fps, but are the visuals of the same quality?

    Emulators would be a good way to do an "apples vs apples" comparison, but then you cannot install emulators on iphones.
  • six_tymes - Wednesday, October 6, 2021 - link

    maybe I missed it, but where in this article does it say whether the A15 is v8 or v9 based? I am yet to find that information. Does anyone know, and have sourcing?

Log in

Don't have an account? Sign up now