Conclusions

Alder Lake is set to come to market for both desktop and mobile, and we’re expecting the desktop hardware to start to appear by the end of the year – perhaps a little later for the rest of the family, but all-in-all we expect Intel is experiencing some serious squeaky bum time regarding how all the pieces will fit in place at that launch. The two main critical factors are operating systems and memory.

Because Alder Lake is Intel’s first full-stack attempt to commercialize a hybrid design, it has had to work closely with Microsoft to enable all the features it needs to make managing a hybrid core design properly beneficial to users. Intel’s new Thread Director Technology couples an integrated microcontroller per P-core and a new API for Windows 11 such that the scheduler in the operating system can take hints about the workflow on the core at a super fine granularity – every 30 microseconds or so. With information about what each thread is doing (from heavy AVX2 down to spin lock idling), the OS can react when a new thread needs performance, and choose which threads need to be relegated down to the E-core or as a hyperthread (which is classified as slower than an E-core).

When I first learned Alder Lake was going to be a hybrid design, I was perhaps one of the most skeptical users about how it was going to work, especially with some of the limits of Windows 10. At this point today however, with the explanations I have from Intel, I’m more confident than not that they’ve done it right. Some side off-the-record conversations I have had have only bolstered the idea that Microsoft has done everything Intel has asked, and users will need Windows 11 to get that benefit. Windows 10 still has some Hardware Guided Scheduling, but it’s akin to only knowing half the story. The only question is whether Windows 11 will be fully ready by the time Alder Lake comes to market.

For memory, as a core design, Alder Lake will have support for DDR4 and DDR5, however only one can be used at any given time. Systems will have to be designed for one or the other – Intel will state that by offering both, OEMs will have the opportunity to use the right memory at the right time for the right cost, however the push to full DDR5 would simplify the platform a lot more. We’re starting to see DDR5 come to the consumer market, but not in any volume that makes any consumer sense – market research firms expect the market to be 10% DDR5 by the end of 2022, which means that consumers might have to be stay with DDR4 for a while, and vendors will have to choose whether to bundle DDR5 with their systems. Either way, there’s no easy answer to the question ‘what memory should I use with Alder Lake’.

Through The Cores and The Atoms

From a design perspective, both the P-core and E-core are showcasing substantial improvements to their designs compared to previous generations.

The new Golden Cove core has upgraded the front-end decoder, which has been a sticking point for analysis of previous Cove and Lake cores. The exact details of how they operate are still being kept under wraps, but having a 6-wide variable length decoder is going to be an interesting talking point against 8-wide fixed-length decoders in the market and which one is better. The Golden Cove core also has very solid IPC figure gains, Intel saying 19%, although the fact there are some regressions is interesting. Intel did compare Golden Cove to Cypress Cove, the backported desktop core, rather than Willow Cove, the Tiger Lake core, which would have been a more apt comparison given that our testing shows Willow Cove slightly ahead. But still, around 19% is a good figure. Andrei highlights in his analysis that the move from a 10-wide to a 12-wide disaggregated execution back-end should be a good part of that performance, and that most core designs that go down this route end up being good.

However, for Gracemont, Intel has taken that concept to the extreme. Having 17 execution ports allows Intel to clock-gate each port when not in use, and even when you couple that with a smaller 5-wide allocation dispatch and 8-wide retire, it means that without specific code to keep all 17 ports fed, a good number are likely to be disabled, saving power. The performance numbers Intel provided were somewhat insane for Gracemont, suggesting +8% performance over Skylake at peak power, or a variety of 40% ST perf/power or 80% MT perf/power against Skylake. If Gracemont is truly a Skylake-beating architecture, then where have you been! I’m advocating for a 64-core HEDT chip tomorrow.

One harsh criticism Intel is going to get back is dropping AVX-512 for this generation. For the talk we had about ‘no transistor left behind’, Alder Lake dropped it hard. That’s nothing to say if the functionality will come back later, but if rumors are believed and Zen 4 has some AVX-512 support, we might be in a situation where the only latest consumer hardware on the market supporting AVX-512 is from AMD. That would be a turn-up. But AMD’s support is just a rumor, and really if Intel wants to push AVX-512 again, it will have a Sisyphean task to convince everyone it’s what the industry needs.

Where We Go From Here

There are still some unanswered questions as to the Alder Lake design, and stuff that we will test when we get the hardware in hand. Intel has an event planned for the end of October called the Intel InnovatiON event (part of the ON series), which would be the right time to introduce Alder Lake as a product to the world. Exactly when it comes to retail will be a different question, but as long as Intel executes this year on the technology, it should make for an interesting competition with the rest of the market.

Instruction Sets: Alder Lake Dumps AVX-512 in a BIG Way
Comments Locked

223 Comments

View All Comments

  • mode_13h - Saturday, August 21, 2021 - link

    > micro-servers Big-little seems much more useful, but Intel typically has gone
    > a long way to ensure that 'desktop' CPUs were not used for that.

    Huh? Their E-series Xeons are simply desktop CPUs with a few less features fused-off.
  • abufrejoval - Saturday, August 21, 2021 - link

    We all know that that's what they are technically. But that didn't keep Intel from selling them, and the required chipsets, which had the same magical snake oil, at a heavy markup, before AMD came along and offered ECC and some RAS for free.

    And that is going to come back, as soon as Intel sees a chance to make an extra buck.
  • mode_13h - Sunday, August 22, 2021 - link

    > that didn't keep Intel from selling them, and the required chipsets, ... at a heavy markup

    Except for maybe the top-end models, I tended to observe E-series (previously E3-series) selling for similar prices as the desktop equivalents. However, workstation motherboards generally have commanded a higher price.
  • mode_13h - Saturday, August 21, 2021 - link

    > given an equal price choice, I cannot imagine preferring the use of AVX-512 for
    > dark silicon and two P-core tiles for eight E-cores over a fully enabled ten P-core chip.

    Aside from the AVX-512 part, the math is quite easy. If you just take what they showed in the Gracemont vs. Skylake comparison, it's clear that 8 E-cores is going to provide more performance than 2 more P-cores. And anything well-threaded enough to fully-load 10 P-cores should probably scale well to at least 16 (or 24) threads.

    As for the AVX-512 part, its absence irrelevant if your workload doesn't utilize it, as most don't. Ryzen 5000 has been very competitive without it. I'm sure folks at Intel were keen to cite that.

    > And I'd belive that most 'desktop' users would prefer the same.

    I don't love the E-cores, in a desktop, but that's more out of apprehension about how well-scheduled they'll be. If the scheduling is good, then I'm fine with having them instead of 2 more P-cores.
  • Spunjji - Tuesday, August 24, 2021 - link

    "If the scheduling is good, then I'm fine with having them instead of 2 more P-cores"
    It's all going to come down to this. Lakefield wasn't great in that regard; presumably anybody running Windows 10 on ADL will get a slightly more refined version of that experience. Hopefully the Windows 11 + Thread Director combo will be what's needed!
  • Timur Born - Friday, August 20, 2021 - link

    My current experience is that anything based on older Lua versions (like 5.1) does not seem to benefit from IPC gains at all, only clock-rate matters.
  • abufrejoval - Saturday, August 21, 2021 - link

    That's interesting.

    If IPC gains were "uniform", that should not happen, which then means they aren't uniform enough for your workloads.

    But a bit more data would help... especially if a newer version of Lua doesn't show this behavior?
  • mode_13h - Sunday, August 22, 2021 - link

    I've never used it, but it seems to be dynamically-typed and table-based. So, I'd assume it's doing lots of hashtable lookups, which seem harder for a CPU to optimize. Maybe newer versions have some optimizations to reduce the frequency of table lookups, which would also be more OoO-friendly.
  • TristanSDX - Friday, August 20, 2021 - link

    for disabled AVX-512, I suspect they found last-minute bug in P cores. ADL is in mass production now, and release can't be posponed, and not many apps use it currently, so they disabled it completely. For Saphire Rapids AVX-512 is mandatory, that's why they delayed it half year, from Q421 to Q222, HPC product without AVX-512 used by many HPC software is just brick.
  • mode_13h - Saturday, August 21, 2021 - link

    That doesn't explain the E-core situation, though. As the article explains, enabling it on only the P-cores would create a real headache for the OS' thread scheduler.

    Plus, a lot of multi-threaded software naively spawns one worker thread per hardware thread, so you could end up with a situation where 24 software threads are fighting for execution time on 16 hardware threads, leading to more context switches and higher software latencies.

    I'm just saying that the stated explanation of disabling it because it's lacking in the E-cores is a suitable reason.

    As for Sapphire Rapids' delays, it's not hard to imagine they're having yield problems with such big chips on their new "Intel 7" process. Also, they're behind schedule for the software support for it, with AMX still being in really rough shape.

Log in

Don't have an account? Sign up now