Compiling Performance / LLVM

As we’re trying to rebuild our server test suite piece by piece – and there’s still a lot of work go ahead to get a good representative “real world” set of workloads, one more highly desired benchmark amongst readers was a more realistic compilation suite. Chrome and LLVM codebases being the most requested, I landed on LLVM as it’s fairly easy to set up and straightforward.

git clone https://github.com/llvm/llvm-project.git
cd llvm-project
git checkout release/11.x
mkdir ./build
cd ..
mkdir llvm-project-tmpfs
sudo mount -t tmpfs -o size=10G,mode=1777 tmpfs ./llvm-project-tmpfs
cp -r llvm-project/* llvm-project-tmpfs
cd ./llvm-project-tmpfs/build
cmake -G Ninja \
  -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi;lldb;compiler-rt;lld" \
  -DCMAKE_BUILD_TYPE=Release ../llvm
time cmake --build .

We’re using the LLVM 11.0.0 release as the build target version, and we’re compiling Clang, libc++abi, LLDB, Compiler-RT and LLD using GCC 10.2 (self-compiled). To avoid any concerns about I/O we’re building things on a ramdisk. We’re measuring the actual build time and don’t include the configuration phase as usually in the real world that doesn’t happen repeatedly.

LLVM Suite Compile Time

In compiling workloads, the 7763 and 75F3 also saw a 3-4% increase in performance compared to their initial reviews.

The 16-core 7343 ends up as the worst performing chip in this metric, while the 24-core 7443 still managed to put itself well ahead of the 28-core Xeon 6330.

I’ve omitted the 72F3 from the chart due to its bad results of >17 minutes per socket rescaling the chart too much – obviously compiling is not the use-case for that SKU.

SPECjbb MultiJVM - Java Performance Conclusion & End Remarks
Comments Locked

58 Comments

View All Comments

  • Andrei Frumusanu - Friday, June 25, 2021 - link

    Those results don't contradict anything I'm saying. Given a normalised throughput performance of the socket, for example here where the 16- and 24- core Milan equals or beats the 28-core ICL-SP in many workloads, the Xeon still handily beats those Milan parts in transactional workloads. The 40-core Xeon has 77% of the jbb performance of the 64-core EPYC even though in the int suite it's only at 60%. Those particular STH results work out because the 7543P is $1000 cheaper than the 7543, but for the SKUs we had in today, Intel still is on equal footing in terms of DB performance value.
  • Cllaymenn - Friday, June 25, 2021 - link

    Whatever one says about some insignificant single anomaly in some DB test... The fact is that ANY company, from small to large, any corporation needing power, any data centre, hosting, cloud computing, research institutes, universities, will choose EPYC on ZEN3 over even the 8320, because it will allow them to compute faster, make more money per month, and less stress for administrators when there are higher network loads, clouds because AMD will "grind" / process faster the requests/needs of thousands of of thousands of clients simultaneously using servers, because in addition to more compute power has more bandwidth AMD platform especially with 256 threads and 8 channel memory and fast Infinity Fabric and many of the ZEN3 optimizations... and is more flexible (harder to clog or jam Zen2/Zen3 from what I've noticed. ) These processors grind through anything you throw at them without any breathlessness.
  • schujj07 - Friday, June 25, 2021 - link

    While Spec is an "industry standard" benchmark, vendors spend hours optimizing for their servers to look better. Therefore as an administrator and designer of a high performance data-center I personally look at Spec results with a grain of salt. For example, Super Micro submitted data for 2 of their A+ AS-1124US-TNRP with dual 75F3 on April 26, 2021. One system has max-jOPS of 276,317 and critial-jOPS of 116,628. The other has a score of 211,179 max-jOPS & 191,813 critical-jOPS. They also have 2 X12DPG-QT6 with dual 8380's and one has scores of 272,500 for max-jOPS & 147,409 for critical-jOPS. The other has scores of 258,368 for max-jOPS & 201,334 for critical-jOPS. In these cases the 75F3 with few cores and threads ends up in a virtual tie with the 8380 in the transactional workload for one of the results, but the second result in the database is a 22-30% lower based on comparison systems. https://www.spec.org/jbb2015/results/res2021q2/

    Depending on the results you want, the 75F3 is a much better value or of equal value to the 8380. I think now you can see why I take Spec with a grain of salt on their results. Globally saying that Milan has issues in transactional DBs based solely on Spec results isn't a good idea. While I know it is the benchmarks that you choose as they are "industry standard," I think it would be worth while to invest in creating an actual real world scenario DB benchmark that doesn't use Spec.
  • Andrei Frumusanu - Friday, June 25, 2021 - link

    > One system has max-jOPS of 276,317 and critial-jOPS of 116,628. The other has a score of 211,179 max-jOPS & 191,813 critical-jOPS.

    Which generally makes submitted scores not very useful, we're using apples-to-apples runs here, and while you can argue they're not as optimised, they're comparable to each other.

    And I also never said that Milan has *issues*, I'm simply saying that compared to other workloads where there's a massive performance lead for AMD, Intel is still competitive, a view that falls in line with many industry customers.
  • Cllaymenn - Friday, June 25, 2021 - link

    We know that Intel watches the Anandtech website, and that you are aware of this, they also send you expensive hardware for testing, and hope that the results will be more favourable to their new development (e.g. 8320) which they have been working on for a long time. I think it would be unpleasant and uncomfortable to criticise their new products harshly if I were writing a review, but I would rather gently point out which is good at what, which is leading and which still needs to catch up. Because of the awareness of the efforts of hundreds or even thousands of Intel engineers I would not have the heart to criticize their new product, or sharply, clearly say who wins everything and the rest can hide. I know that even the engineers, designers and CPU architects like to read about their new baby after work, and they go to sites like Anandtech with enthusiasm and quiet hope that they have made a better impression on the reviewer and readers, than their previous older products, that we have noticed a significant difference, jump in performance and that it has been appreciated and maybe there will be some nice, positive comments, feedback. It probably gives them a lot of happiness to see people out there enjoying the results of their hard work and another success for the company. Because the 8320 was a huge challenge for these people, it's a brand new fresh 10nm SuperFin technology and a mega monolithic 40 core big piece of silicon. And it works! It may not catch up with the 64 core competition but it's still a huge step forward for them, reaching a significant milestone. Once they mastered this SuperFin 10nm technology to create monolithic 40 core chips they now have a lot of experience and know how to do it even better, especially in a modular architecture where the silicon pieces will be smaller. Many of the threads stem from the creation of the Xeon 8320, so I understand the reviewer's attitude of appreciating the level of technology, sophistication, and performance of their new design. (sorry for some grammatical errors, I'm still improving)
  • bwhitty - Friday, June 25, 2021 - link

    Can't tell if you're very subtly implying Andrei is coloring the results in favor of Intel? Perhaps you're not, but anyways it doesn't seem he is. Other than that, I agree that

    Small correction: Ice Lake is on 10nm+, not Super Fin. Tiger Lake is 10SF (10++), and Sapphire Rapids will be on 10 Enhance Super Fin, so 10nm+++.

    Tangent: I think that Ice Lake being on the non-SF process actually bodes extremely well for Sapphire Rapids because Ice Lake even in laptops is just not that good from a mfg perspective. It's basically Intel 10nm's first shippable and salvaged process. Super Fin appears far, far better in Tiger Lake versus Ice Lake, and so an improvement on top of that thusly should perhaps finally bring Intel's mfg in line with TSMC 7nm. That gives Sapphire Rapids a good place to be in the first half of 2022 until Genoa rolls out on TSMC 5nm is late 2022 / early 2023.
  • Cllaymenn - Friday, June 25, 2021 - link

    bwhitty. I did not mean favoring Intel products, but a more subdued way of speaking about their performance in relation to ZEN3, a way other than the popular Linus on YT, which is sharply pressing Intel with each premiere of new AMD products.

    As for Super Fin, I read about it recently in one of the popular IT websites. I typed in google and found a quote

    "Intel Xeon Scalable Ice Lake-SP processors were announced some time ago, but we had to wait a while for their premiere. We finally got it - we got to know the technical details of the units, as well as their performance results. Intel Xeon Scalable units (Ice Lake-SP) use the new Sunny Cove microarchitecture, which is expected to translate into up to a 20% increase in IPC over the previous generation Skylake. The chipsets are manufactured using a new 10nm SuperFin process.

    As I checked with a few other sources, I now know that this site was wrong about the 83xx series.
  • Ian Cutress - Friday, June 25, 2021 - link

    On 10nm naming, Intel has changed it twice. There are no + or ++ any more.

    https://www.anandtech.com/show/16107/what-products...
  • bwhitty - Monday, June 28, 2021 - link

    Oh yes, Dr Cutress, I know all these Intel mfg node specifics purely from Anandtech’s breakdowns
  • outsideloop - Friday, June 25, 2021 - link

    Far, far better? Tiger Lake H still sucks power like an anebriated Cleopatra.

Log in

Don't have an account? Sign up now