Mixed IO Performance

For details on our mixed IO tests, please see the overview of our 2021 Consumer SSD Benchmark Suite.

Mixed IO Performance
Mixed Random IO Throughput Power Efficiency
Mixed Sequential IO Throughput Power Efficiency

The Sabrent Rocket Q4 and Corsair MP600 CORE deliver excellent performance on the mixed sequential IO test, leading to above-average power efficiency as well. Their performance on the mixed random IO test is not great, and is actually slower overall than what we saw with Phison E12 QLC drives like the original Rocket Q and the MP400.

Mixed Random IO
Mixed Sequential IO

The earlier E12+QLC drives outperform these new E16+QLC drives across almost all phases of the mixed random IO test, despite using same Micron 96L QLC NAND. On the other hand, the newer QLC drives turn in surprisingly fast and steady results throughout the mixed sequential IO test, though the 2TB MP600 CORE does get off to a bit of a slow start.

 

Power Management Features

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

For many NVMe SSDs, the closely related matter of thermal management can also be important. M.2 SSDs can concentrate a lot of power in a very small space. They may also be used in locations with high ambient temperatures and poor cooling, such as tucked under a GPU on a desktop motherboard, or in a poorly-ventilated notebook.

Sabrent Rocket Q4 4TB
NVMe Power and Thermal Management Features
Controller Phison E16
Firmware RKT40Q.2 (EGFM52.3)
NVMe
Version
Feature Status
1.0 Number of operational (active) power states 3
1.1 Number of non-operational (idle) power states 2
Autonomous Power State Transition (APST) Supported
1.2 Warning Temperature 75 °C
Critical Temperature 80 °C
1.3 Host Controlled Thermal Management Supported
 Non-Operational Power State Permissive Mode Supported

Our samples of the Sabrent Rocket Q4 and Corsair MP600 CORE use the same firmware from Phison (though Sabrent has re-branded the version numbering). As a result, they support the same full range of power management features. The 4TB Rocket Q4 reports higher maximum power draws for its active power states than the 2TB MP600 CORE, but both drives report the same idle behaviors.

The advertised maximum of 10.58 W for the 4TB Rocket Q4 is alarming and definitely supports Sabrent's suggestion that the drive not be used without a heatsink. However, during our testing the drive never went much above 7W for sustained power draw, which is more in line with the maximum power claimed by the 2TB MP600 CORE (which also tended to stay well below its supposed maximum). In practice, these drives can get by just fine without a big heatsink as long as they have some decent airflow, because real-world workloads will almost never push these drives to their maximum power levels for long.

Sabrent Rocket Q4 4TB
NVMe Power States
Controller Phison E16
Firmware RKT40Q.2 (EGFM52.3)
Power
State
Maximum
Power
Active/Idle Entry
Latency
Exit
Latency
PS 0 10.58 W Active - -
PS 1 7.14 W Active - -
PS 2 5.43 W Active - -
PS 3 49 mW Idle 2 ms 2 ms
PS 4 1.8 mW Idle 25 ms 25 ms

Note that the above tables reflect only the information provided by the drive to the OS. The power and latency numbers are often very conservative estimates, but they are what the OS uses to determine which idle states to use and how long to wait before dropping to a deeper idle state.

Idle Power Measurement

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks, and depending on which NVMe driver is in use. Additionally, there are multiple degrees of PCIe link power savings possible through Active State Power Management (APSM).

We report three idle power measurements. Active idle is representative of a typical desktop, where none of the advanced PCIe link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. Our Desktop Idle number represents what can usually be expected from a desktop system that is configured to enable SATA link power management, PCIe ASPM and NVMe APST, but where the lowest PCIe L1.2 link power states are not available. The Laptop Idle number represents the maximum power savings possible with all the NVMe and PCIe power management features in use—usually the default for a battery-powered system but rarely achievable on a desktop even after changing BIOS and OS settings. Since we don't have a way to enable SATA DevSleep on any of our testbeds, SATA drives are omitted from the Laptop Idle charts.

Idle Power Consumption - No PMIdle Power Consumption - DesktopIdle Power Consumption - Laptop

Both the Sabrent Rocket Q4 and Corsair MP600 CORE show quite high active idle power draw, a consequence of their use of a PCIe Gen4 controller made on 28nm rather than something newer like 12nm. However, there's no problem with the low-power idle states except for Phison's usual sluggish wake-up from the deepest sleep. This seems to be worse for higher capacity drives, with the 4TB Rocket Q4 taking about an eighth of a second to wake up.

Idle Wake-Up Latency

Advanced Synthetic Tests: Block Sizes and Cache Size Effects Is QLC Fine for Primetime?
Comments Locked

60 Comments

View All Comments

  • pdegan2814 - Wednesday, April 14, 2021 - link

    The endurance rating of the standard MP600 is exactly why I bought it as well. It blows most other SSDs out of the water in that regard. And it's more than fast enough for my needs.
  • ozzuneoj86 - Friday, April 9, 2021 - link

    All I get from any SSD review lately is that SK Hynix needs to release a Gen4 drive, since their Gen3 drive leads by a good margin in many tests already. Unless you need more than 1TB on a single drive, there's not much reason to go with anything but the P31 (or the 980 Pro if money is no object). Very high efficiency (less power is less heat), high performance, high consistency (empty vs full) and competitively low price. The only thing preventing me from getting a P31 myself is that I'm sure they'll put out a Gen4 version before long, and unless they screw something up it should be among the best drives available.
  • ozzuneoj86 - Friday, April 9, 2021 - link

    Sorry, I forgot about the SN850 and 970 Pro... those are also competitive, but much more expensive.
  • bernstein - Saturday, April 10, 2021 - link

    The problem with the p31 is that it was never available. at least in europe. And there is no 2tb model...
  • ozzuneoj86 - Sunday, April 11, 2021 - link

    Sorry to hear they are hard to get in Europe. The P31 is very easy to get in the US for $135 and often goes on sale for less at Amazon.

    But I agree, not having a 2TB option is unfortunate.
  • Samus - Sunday, April 11, 2021 - link

    We can get the 1TB regularly for (MSRP?) $130-$135 at retail and online in the USA, but as you and ozzuneoj said, not having a 2TB variety is a missed opportunity for Hynix because this has been my go-to drive for nearly a year in just about every upgrade I do (I use nothing else in laptops or SFF\ITX systems where the power efficiency and low heat are most beneficial)

    On top of that, I have installed dozens and zero have failed. An amazing accomplishment from Hynix. I've used the S31 in legacy systems with SATA ports and it's equally excellent especially for the price, though the MX500 is still my go-to drive for legacy systems because it is often slightly cheaper, and again, I have seen zero failures from those drives over the years.

    Come on Hynix make a 2TB model already...
  • back2future - Sunday, April 11, 2021 - link

    that's not the point for data retention . Having data on a SSD (nand flash, type slc, mlc, tlc, qlc) it would be necessary specification for customers (beside TBW) how to store SSDs or power cycle for long term data security?
    While having been impressed with performance (compared to non-raid HDD) since first time SSD experience, few information about long term data security is minor customer support on that item?
  • Hulk - Friday, April 9, 2021 - link

    I'm pleasantly surprised by the very good performance metrics for these drives. The combination of 1/4 drive SLC cache with the "housekeeping" in the background makes for a fast, yet economical drive. I have a feeling prices on these will drop pretty quickly and they'll be a great buy in 6 months to a year. I don't think I'd use them in a laptop and I think I'd go 2TB or larger for the sake of performance and endurance though.
  • shabby - Friday, April 9, 2021 - link

    Quality(endurance) , price, performance... choose two. With qlc you can only choose one 🙄
  • Hulk - Friday, April 9, 2021 - link

    I'm not so sure about that. 225GB day written for 5 years for the 2TB drive. If you aren't in a server situation I don't know how you'd ever get near that number.

Log in

Don't have an account? Sign up now