IGP: 720p Gaming Tests

Testing our Cezanne sample for integrated graphics is a double-edged sword – AMD fully expects this CPU to be paired with a discrete solution in almost all notebook environments, whereas mini-PC designs might be a mix of integrated and discrete. The integrated graphics on this silicon is more geared towards the U-series processors at 15 W, and so that is where the optimizations lie. We encountered a similar environment when we tested Renoir at 35 W last year as well.

In order to enable the integrated graphics on our ASUS ROG Flex X13 system, we disable the GTX 1650 through the device manager. This forces the system to run on the Vega 8 graphics inside, which for this processor runs at 2100 MHz, a +350 MHz jump from the previous generation based on the improved power management and minor manufacturing improvements. We did the same to the other systems in our test suite.

Integrated graphics over the years has been built up from something barely useable in a 2D desktop environment to hardware that can competitively run the most popular eSports titles at good resolutions, medium settings, at playable framerates. In our recent review of AMD’s Ryzen 4000G Desktop APUs, we noted that these were the best desktop APUs that money could buy, held back at this point mostly by the memory bandwidth, but still enabling some good performance. Ultimately modern day integrated graphics has cannibalized the sub-$100 GPU market, and these sorts of processors work great in budget builds. There’s still a way to go on performance, and at least mobile processors help in that regard as more systems push to LPDDR4X memory systems that afford better memory bandwidth.

For our integrated graphics testing, we’re using our lowest configuration for our game comparisons. This typically means the lowest resolution and graphics fidelity settings we can get away with, which to be honest is still a lot better visually than when I used to play Counter Strike 1.5 with my dual core netbook in the late 2000s. From there the goal is to showcase some good graphics performance tied in with CPU performance to see where the limits are – even at 720p on Low settings, some of these processors are still graphics limited.

Integrated Graphics Benchmark Results
AnandTech Ryzen 9
5980HS
Ryzen 9
4900HS
Ryzen 7
4800U
Core i7
1185G7
Power Mode 35 W 35 W 15 W 28-35 W
Graphics Vega 8 Vega 8 Vega 8 Iris Xe
Memory LP4-4267 D4-3200 LP4-4267 LP4-4267
Frames Per Second Averages
Civilization 6 480p Min 101.7 98.9 68.4 66.2
Deus Ex: MD 600p Min 80.7 76.5 61.2 69.1
Final Fantasy XV 720p Med 31.4 31.3 29.1 36.5
Strange Brigade 720p Low 93.2 85.2 75.7 89.3
Borderlands 3 360p VLow 89.8 93.6 - 64.9
Far Cry 5 360p Low 68.0 69.5 60.0 61.3
GTA 5 720p Low 98.9 80.7 80.0 81.9
Gears Tactics 720p Low 86.8 - 87.8 118.2
95th Frame Time Percentiles (shown as FPS)
Civilization 6 480p Min 69.0 67.4 45.7 43.8
Deus Ex: MD 600p Min 45.6 57.3 38.1 44.1
Final Fantasy XV 720p Med - 26.6 24.6 26.5
Strange Brigade 768p Min 84.2 77.0 68.6 73.0
Borderlands 3 360p VLow 63.6 73.8 - 48.9
Far Cry 5 360p Low 50.3 62.3 43.8 49.8
GTA 5 720p Low 66.8 52.8 56.0 55.7
Gears Tactics 720p Low 67.5 - 78.3 104.5

Despite the Ryzen 9 5980HS having LPDDR4X memory and extra frequency, the performance uplift against the Ryzen 9 4900HS is relatively mediocre – a few FPS at best, or losing a few FPS at worst. This is except for GTA, where the uplift is more ~20%, with the Zen 3 cores helping most here. In most tests it’s an easy win against Intel’s top Xe solution, except in Gears Tactics, which sides very heavily with the Intel solution.

With all that being said, as mentioned, the Ryzen 9 parts here are more likely to be paired with discrete graphics solutions. The ASUS ROG Flow X13 we are using today has a GTX 1650, whereas the ASUS Zephyrus G14 with the 4900HS has an RTX 2060. These scenarios are what really dictate the cooling solution in these systems, as well as how they are both used in workloads that requires CPU and GPU performance.

For any users confused as to why we run at these settings; these are our low 'IGP'-class settings in our CPU Gaming test format. As mentioned in our new CPU Suite article in the middle of last year, our CPU Gaming tests have four sets of settings: 720p Low (or Lower), 1440p Low, 4K Low, and 1080p Maximum. The segment above our lowest this in our suite is 1440p, which for a lot of these integrated GPUs would put numbers into the low double digits, if not lower, which something we've done in the past to massive complaints about why even bothering with such low framerate numbers. The point here is to work from a maximum frame rate, see if the game is even playable to begin with, and then detect where in a game the bottleneck can be; in some of these tests we're still dealing with GPU/DRAM bottlenecks. I've played CSS1.5 and other games at a Lan party on dual core AMD netbooks in the late 2000s, having to use low resolution texture packs to get it even 20 FPS playable. I still had masses amount of fun. From these numbers you can see the best possible frame rates for a given title and engine, and work down from there. It provides a starting point for further directions. These processors more often being paired with discrete solutions anyway, making discussions about IGP performance almost somewhat trivial compared to the rest of the data/

CPU Tests: Synthetic and SPEC Conclusions: Focusing on Premium Experiences
Comments Locked

218 Comments

View All Comments

  • Smell This - Tuesday, January 26, 2021 - link


    LOL @ ZoZo ___ he is messin' with you, ts
    You are correct in that Dr Su and AMD has played yet another "Rope-A-Dope" on the competition. I suspect RDNA2/Navi II will raise its pretty head after the "Lexa" cores run their course. It has been a productive run.

    There are Radeon pro CNDA1 cores floating around that will likely evolve into the RX 6500 RDNA2/Navi IIs discreet replacements for Lexa. These will be the Display Core Next: 3.0 // Video Core Next: 3.0 arch associated with the Big Navi.

    And ... I don't think AMD is being lazy. I think the Zen2/Zen3 APU product stack is being developed as yet to be revealed. Home / Office / Creator ? There is a Radeon Pro Mac Navi Mobile with RDNA1 discreet video w/HBM2.

    We will see how the 6xxx APUs evolve. Grab your popcorn!
  • TelstarTOS - Tuesday, January 26, 2021 - link

    lazy, definitely lazy.
  • vortmax2 - Saturday, January 30, 2021 - link

    One sees lazy, another sees smart business decision.
  • samal90 - Friday, February 12, 2021 - link

    The APU in 2022 will use RDNA 2 finally. Expect a substantial GPU performance lift next year with the new Rembrandt chip.
  • Spunjji - Thursday, January 28, 2021 - link

    A console APU is not a PC APU - they have completely different design constraints and memory architectures. Vega was used here because it allowed AMD to bring Zen 3 APUs to market faster than they managed with Zen 2 - it's all mentioned in the review that you're commenting on......
  • sandeep_r_89 - Friday, January 29, 2021 - link

    The consoles don't use iGPUs.......most likely, RDNA2 design so far hasn't been designed for low power usage, it's focused more on high performance. Once they do the work to create a low power version, it can appear in iGPUs, laptop dGPUs, low end desktop dGPUs etc.
  • Netmsm - Tuesday, January 26, 2021 - link

    any hope for Intel?
  • Deicidium369 - Wednesday, January 27, 2021 - link

    LOL. Any hope for AMD?

    Releases Zen 3, RDNA2 and consoles - and only grows revenue $240M over Q3.... Didn't even gross $10B last year.

    Meanwhile Intel posts 5 YEARS of record growth...
  • Spunjji - Thursday, January 28, 2021 - link

    A discussion of a company's technological competitiveness is not a discussion of their financial health. Any dolt knows this, why do you pretend we can't see you moving the goalposts in *every single comment section*?
  • Spunjji - Thursday, January 28, 2021 - link

    This post is even more hilarious in the context of AMD's financial disclosure today 😁

Log in

Don't have an account? Sign up now