Conclusion

The sheer capacity alone is enough to make the 8TB Sabrent Rocket Q and 8TB Samsung 870 QVO impressive and groundbreaking products. But reaching this new capacity point for consumer SSDs has required significant tradeoffs. These two drives rely on QLC NAND flash memory with worse performance and write endurance than the TLC NAND used by mainstream consumer SSDs. Thankfully, the sheer high capacity of these drives offsets some of the downsides of QLC NAND, but it does not eliminate all of them.

The result is a pair of drives that blur the lines between low-end and premium products. The price tags are unquestionably premium territory, and even on a per-GB basis these drives aren't the cheapest. Rather than offering economies of scale, the niche status of such high-capacity SSDs carries a bit of a price premium. This is especially true of the 8TB Sabrent Rocket Q: it is currently at its cheapest-ever price, but is still 45% more expensive than the 8TB Samsung 870 QVO. The Rocket Q's use of an NVMe controller (rather than a SATA controller) only accounts for a few dollars of this vast difference. Sabrent is probably paying more to buy Micron's QLC on the open market than it costs Samsung to use their own QLC, but a large portion of this price disparity can simply be blamed on lack of competition. The Sabrent Rocket Q was the first 8TB consumer NVMe SSD, and only one competitor has showed up since: the Corsair MP400, based on the same basic formula as the Rocket Q.

While its price tag certainly appears exorbitant next to the cheaper Samsung 870 QVO, there's no question that the 8TB Rocket Q deserves more premium pricing. The Samsung 870 QVO is slow even by SATA SSD standards, and is best used as a secondary drive for bulk data with low performance requirements. Ignoring the price, it looks great in comparison to an 8TB hard drive: silent, faster (usually), more compact. But compared against other SSDs it is lackluster. The fact that it's no faster than the 2TB and 4TB models is another disappointment, and a clear sign that 8TB is far beyond the sweet spot of the SSD market.

The Rocket Q on the other hand is fast enough to provide a good experience as a primary drive, even if it gets loaded down with several TB of data. It won't always match the performance of a smaller high-end drive, but it doesn't suffer as much from the worst-case performance problems that plague most QLC SSDs (and likely the smaller capacities of the Rocket Q as well). At its worst, the Rocket Q only degrades down to a bit slower than mainstream SATA drives. Rocket Q doesn't quite manage to provide that magical combination of maximum capacity and maximum performance, but comes surprisingly close.

High-Capacity Consumer SSD Price Comparison
December 4, 2020
  1TB 2TB 4TB 8TB
ADATA XPG SX8100
TLC
$119.99 (12¢/GB) $229.99 (11¢/GB) $499.99 (12¢/GB)  
Addlink S92
QLC
$145.88 (15¢/GB) $277.88 (14¢/GB) $649.99 (16¢/GB)  
Corsair MP400
QLC
$137.00 (14¢/GB) $288.00 (14¢/GB) $662.00 (17¢/GB) $1498.00 (19¢/GB)
Corsair MP510
TLC
$142.99 (15¢/GB) $289.99 (15¢/GB) $744.99 (19¢/GB)  
Inland Platinum
QLC
$94.99 (9¢/GB) $191.99 (10¢/GB) $499.99 (12¢/GB)  
Sabrent Rocket Q
QLC
$109.98 (11¢/GB) $219.98 (11¢/GB) $599.98 (15¢/GB) $1299.99 (16¢/GB)
Sabrent Rocket Q 4.0
QLC, PCIe Gen4
$149.98 (15¢/GB) $279.98 (14¢/GB) $689.98 (17¢/GB)  
Sabrent Rocket
TLC
$129.98 (13¢/GB) $249.98 (12¢/GB) $699.99 (17¢/GB)  
WD Black AN1500
TLC, PCIe Gen3 x8
$299.99 (30¢/GB) $549.99 (27¢/GB) $999.99 (25¢/GB)  
SATA SSDs:
Samsung 870 QVO
QLC
$89.99 (9¢/GB) $199.99 (10¢/GB) $419.99 (10¢/GB) $899.99 (11¢/GB)
Samsung 860 EVO
TLC
$99.99 (10¢/GB) $199.99 (10¢/GB) $540.99 (14¢/GB)  
WD Blue 3D
TLC
$104.99 (10¢/GB) $179.00 (9¢/GB) $499.99 (12¢/GB)  

Looking at the overall state of pricing in the SSD market, among NVMe drives, the current 8TB options are the Sabrent Rocket Q and the Corsair MP400, which use almost identical hardware. The Sabrent Rocket Q currently has better pricing than the more recently-released MP400. Dropping down to less extreme capacities, neither product is the best option. Microcenter's Inland Platinum is their version of the Phison E12 with QLC, and it's cheaper than the Rocket Q at 1TB, 2TB and 4TB. There's also the ADATA XPG SX8100, by far the cheapest multi-TB NVMe SSD with TLC NAND. It uses Realtek's RTS5762 controller so it's really not a high-end drive even by PCIe 3 standards, but it's definitely a step up from the QLC drives, especially for heavier workloads. The 4TB SX8100 is currently $499 and was recently on sale for $399.

 

In the consumer SATA SSD market, there are far fewer options for very large drives. The 870 QVO is unopposed at the 8TB capacity, and the only 4TB alternatives are TLC drives. However, the 4TB WD Blue at 20% more than the 4TB 870 QVO seems like a pretty good upgrade. At 1TB and 2TB the 870 QVO is uncompetitive: the 860 EVO is currently only $10 more at 1TB, and the same price at 2TB.

 

Looking Forward

For most consumers, 8TB SSDs will not become a realistic proposition for several more generations of 3D NAND technology. These drives are an early preview of that future, and highlight what else needs to improve aside from just the price. Even though QLC NAND has a reputation for poor performance, both of these 8TB drives are often bottlenecked instead by the controller: partly a result of putting 64 NAND flash dies behind 8 channel controllers. The consumer SSD market is unlikely to reverse direction and start moving towards wider controllers, so in order for 8TB drives to go mainstream without the limitations of today's models, we'll need to see higher per-die capacities and much higher IO speeds per channel.

Higher die capacities will go hand in hand with cost reductions in future generations of 3D NAND flash memory, and by the time 8TB drives are mainstream we'll probably see 1TB drives as the same kind of baseline that 256GB drives are today. Movement toward higher interface speeds between the NAND and controller is already underway, spurred on by the arrival of PCIe 4.0. There's now demand for 4-channel NVMe SSD controllers capable of several GB/s, which requires NAND interface speeds far in excess of what the Sabrent Rocket Q's Phison E12 is capable of.

We will soon be continuing our exploration of newer QLC SSDs with a look at the 1TB Corsair MP400, which should be very similar to the 1TB Rocket Q. At lower capacities, the limitations of QLC NAND are a bigger challenge, and there's more competition from entry-level TLC drives. We're also testing the Sabrent Rocket Q4, the PCIe 4.0 successor to the Rocket Q—another hybrid of high-end and low-end features. However, this one currently only goes up to 4TB.

Power Management
Comments Locked

150 Comments

View All Comments

  • Scour - Monday, December 7, 2020 - link

    After experiences which some QLC-SSDs from Samsung and Crucial I have to say: Stay away from QLC if you want performance.

    Maybe it´s OK for ppl who install a windows and store some music or photos on it, but if you want to write larger amount of data you will be faster with HDDs.

    It´s a shame that some ppl recommend a QVO because it have a Samsung-controller and DRAM. Don´t agree with them because some cheap TLC-SSDs are much faster.
  • Oxford Guy - Monday, December 7, 2020 - link

    Samsung is often overrated anyway. Their planar TLC drives were so poorly made that they have to periodically rewrite the data that's on the drive to maintain decent performance.

    I also remember the company's completely bogus power consumption claims, claims that were taken as truth by consumers who would recommend the drives based on the deception.
  • Scour - Tuesday, December 8, 2020 - link

    My 840 (first version) never was good, it was slower than some of my cheapest SSDs in daily use. I use it now for video-recording on a set-top-box. It´s fast enough for the writing-speed and it gets erased all 2-3 weeks.

    But the 850 and 860 Evo works good and fast.

    The QVO-series maybe beats other QLC-products like DRAM-less BX500 (so far never seen benchmarks of new Sandisk Plus with QLC) but is to expensive in capacities less than 8TB
  • WaltC - Monday, December 7, 2020 - link

    This has to be the first NMEe .M2-interface vs. SATA3-interface SSD comparison that ignores the differences in bus connections as if they don't exist--or as if they don't matter. Scratching my head over this one. Max optimal bandwidth for Sata3 SSD's is generally less than 550MB/s. Max optimal bandwidth for an .M2 NVMe 3x4 PCIe 3 drive like the Sabrent here is 3.5-5.x GB/s. And for PCIe 4 3x4 NVMe drives like the 980 Pro from Samsung, the max optimal bandwidth is as much a 7+ GB/s. Comparing the internal drive controllers and the onboard ram between SSD's is fine and should be done--but *never* at the expense of treating the drive interfaces into the system as if they just don't matter, imo...;) If people are merely looking capacities and prices without regard to performance this might be a helpful review. But when is that ever really the case? With SATA3 SSDs, it doesn't really matter about the internals, the performance is caped at < 550MB/s. The bottleneck being the drive's system interface.
  • peevee - Wednesday, December 9, 2020 - link

    2TB of SLC is equal to 8TB of QLC. I doubt the SLC flash is separate from QLC, they probably use QLC in SLC mode until 2TB fill up, and then start compressing the data into QLC. So the switch might happen without constant sequential write too.
  • ballsystemlord - Wednesday, December 9, 2020 - link

    @Billy , Under "Random Write Performance" (burst and sustained,) you'll notice that you wrote the same comment twice by mistake.
  • zhpenn - Monday, February 8, 2021 - link

    About the 8TB version power consumption, I notice in the spec is 5.5W when compare to 860 EVO(4W) Can I put 870 QVO 8TB into a USB 3.0 SATA enclosure and used it without an unstable issue? or it may eject unexpectedly or slow speed due to high power consumption?
  • PushT - Thursday, October 14, 2021 - link

    How big is the cache on this drive ? The 32 GB "sustained"transfer falls within that cache, is that right ? Say I wanted to make a backup of my whole system, on this drive, or just move the backup to it, or other large files for that matter. How would the sustained 128KB write performance look ? Why do you test for this rather small transfer size when it only showcases the faster cache ? Am I wrong ? Please tell me why you can't just as well include longer and larger transfers, so as to show what happens when the QLC nand is written to ?
  • PushT - Thursday, October 14, 2021 - link

    To be fair this drive has a large dynamic cache. You can transfer a lot of data before you hit the QLC nand directly. But if you look at the review at Tom's you can see how the perfomance actually drops to 200 MB/s after the cache is filled up, about that of a WD black HDD. That is not too impressive. Also I wonder about the heat when you start using these small drives for bulk storage...
  • PushT - Thursday, October 14, 2021 - link

    With the Samsung 870 Evo, as an example, you can fill up the whole drive with sequential writes at 500 MB/s. Looking at a potential bulk storage solution, you would write a full hypothetical 8TB Samsung Evo 870 sata ssd in approximately 4,43 hours, whereas filling a Sabrent rocket 8TB would take about 6,2 hours. So depending on your usage, there are trade-offs. If I was to copy drives I don't see why I would use this over a top Sata ssd.

Log in

Don't have an account? Sign up now