Burst IO Performance

Our burst IO tests run at a queue depth of one and the amount of data transferred is limited to ensure that SLC write buffers don't fill up and controllers don't overheat. In between each burst there's enough idle time to keep the drive averaging a 20% duty cycle, allowing for some buffered writes and deferred garbage collection to be completed. The random read and write tests use 4kB operations and the sequential tests use 128kB operations. All the burst tests are confined to a 16GB portion of the drive, so DRAMless SSDs are not disadvantaged as much as they are for larger tests.

QD1 Burst IO Performance
Random Read Random Write
Sequential Read Sequential Write

The Samsung 870 QVOs show significant improvement to QD1 random read performance, with the 1TB model still outperforming the 4TB model. QLC still imposes a bit of a performance penalty relative to mainstream SATA drives, but the biggest difference on display here is naturally from the NVMe drive serving the reads entirely out of its huge SLC cache.

For random writes at QD1, the 870 QVO is a stark regression from its predecessor, which was on par with the TLC-based 860 EVO. The 870 QVO is now clearly slower than mainstream TLC SSDs and is barely faster than the slower DRAMless competitor.

Sequential reads and writes at QD1 both show slight improvements, but these drives are almost all simply bumping against the limits of the SATA interface.

Sustained IO Performance

Our sustained IO tests measure performance on queue depths up to 32, but the scores reported here are only the averages for the low queue depths (1,2,4) that are most representative of real-world consumer workloads. Each queue depth is tested for up to one minute or 32GB, and the tests are confined to a 64GB span of the drive.

Sustained IO Performance
Random Read Random Write
Sequential Read Sequential Write
Sustained IO Performance
Random Read Random Write
Sequential Read Sequential Write

The most notable performance changes the 870 QVO brings to the sustained IO tests are from the 1TB model, which has greatly improved both random and sequential write performance. However, this comes at the cost of reduced random read performance, which is also a weakness for the 4TB model.

Power efficiency from the 870 QVOs during the sustained IO tests ranges from poor to average. Samsung's controller and LPDDR4 help keep power draw in check, but ultimately it takes more energy to operate slower, more complicated QLC NAND.

Performance at a glance
Random Read Random Write
Sequential Read Sequential Write

Looking at the big picture of the 870 QVO against all the other drives we've tested shows that the 870 QVO can reach the same top speeds as most SATA drives for three out of the four workload types. Random reads are the exception, where even high queue depths don't bring the 870 QVO up to the SATA limits during our sustained test, and the power draw is clearly on the high side there as well.

Random Read
Random Write
Sequential Read
Sequential Write

Compared to its predecessor, the 870 QVO brings slight improvements to random read performance, mainly at higher queue depths, while keeping power consumption almost unchanged. Random write performance has changed drastically for the 1TB QVO: the 1TB 870 is able to ramp up to much higher random write speeds, keeping pace with the 4TB model until the very end of the test when the smaller drive's cache finally runs out in spite of the idle time between phases of the test. The older 1TB 860 QVO's random write speed was constrained almost from the very beginning of the test. The 1TB 860 QVO also used to show a bit of fall-off in sequential read performance as the test reached higher capacities, and that behavior is gone with the 870 QVO. Sequential writes show a similarly drastic improvement for the 1TB 870 QVO, now able to generally keep pace with the larger model, which was not remotely the case for the previous generation.

Some of the big differences in write speed shown for the 1TB QVOs here may be an artifact of this test's size and duration, but even so it is clear that the smallest QV

AnandTech Storage Bench Mixed Read/Write Performance & Power Management
Comments Locked

64 Comments

View All Comments

  • ksec - Tuesday, June 30, 2020 - link

    You get additional 5% off on Newegg as well. Soon I will have this in my NAS.
  • Slash3 - Wednesday, July 1, 2020 - link

    I have two of the 2TB MX500 SSDs. They're fantastic drives, and I paid ~$220 each for them... eighteen months ago. The market hasn't stagnated, it's ceased movement entirely. :(
  • eek2121 - Wednesday, July 1, 2020 - link

    This was due to a conscious movement of NAND manufacturers to “preserve profitability”. We need some fresh blood in the industry.
  • scineram - Friday, July 3, 2020 - link

    That makes sense. We wouldn't want any of them to go bankrupt.
  • damianrobertjones - Tuesday, June 30, 2020 - link

    "That's a shrinking market segment, but high-capacity drives are probably going to be one of the last areas where SATA still makes sense"

    I put together an mAtx system today and it only had 1x m.2 slot. Sata SSD for storage (games) it is then.
  • Great_Scott - Thursday, July 2, 2020 - link

    I see this "SATA is dead!?!?!12" on a lot of sites, and it makes no sense at all.

    Most motherboards, even full size ones, as of 2020, have an average of 2 M.2 slots. And on a lot of boards the second slot isn't PCIe(!)

    The plain fact of life is that if you intend to have multiple game drives (and a lot of people do) or a smaller SSD for storage, you're going to HAVE TO use SATA. No other choice.

    I'm sorry, but in this particular case, Anandtech Editors, SATA is not and can not "go away". Not for at least another 2 PC replacement cycles at that.
  • Lolimaster - Monday, July 6, 2020 - link

    Fact is theres almost zero difference between sata and the fastest nvme ssds. Even on the most open world/huge map load the diffetence is between zero or 1sec on a 10-15sec loading screen.
  • Lucky Stripes 99 - Saturday, July 4, 2020 - link

    If you don't mind eating up a PCIe slot, you can get PCIe M.2 adapter cards for fairly cheap from Chinese resellers. Single slot cards are around $10 while dual slot cards are around $13. I picked one up because the M.2 slot on my H97 board was restricted to X2 and my 970 EVO was saturating the link.
  • Sivar - Tuesday, June 30, 2020 - link

    "The 1TB QVOs (both old and new) are prone to write latencies that are worse than the 5400RPM hard drive."

    ... This means the following sentence is a valid argument, in reality, in 2020: "I replaced my 1TB SSD with a 7200RPM hard drive to reduce write latencies, improve durability, and save more than 50% in costs."
  • Billy Tallis - Tuesday, June 30, 2020 - link

    Just make sure to keep in mind that write latency matters a lot less than read latency for general consumer usage, because your OS is happy to do a lot of write buffering in RAM if the software isn't specifically requesting otherwise (eg. databases).

Log in

Don't have an account? Sign up now