System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For TRX40 we are running using Windows 10 64-bit with the 1909 update as per our Ryzen Threadripper 3960X and 3970X CPU review.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real-world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our testbed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)Power: OS Idle (w/ GTX 980)Power: Prime95 Blend (w/ GTX 1080)

In our power consumption testing, the ASUS ROG Zenith II Extreme has noticeably higher power consumption in all three tests. This can be attributed to the LiveDash OLED panel, as well as multiple premium controllers and componentry on board. At full load, the power is more reasonable with a total power consumption of 361 W, which is 10 W more than the ASRock TRX40 Taichi, and 17 W than the MSI Creator TRX40.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

POST times on HEDT platforms can usually be slow, but the ASUS ROG Zenith II Extreme is pretty fast at booting all things considered. With controllers disabled, the ROG Zenith II Extreme is even faster at POSTing with a time of just 21.2 seconds.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test the DPC at the default settings straight from the box, and the ASUS ROG Zenith II Extreme did well with a latency time of 145.4 ms. The best we've seen on the TRX40 models we have tested so far.

Board Features, Test Bed and Setup CPU Performance, Short Form
POST A COMMENT

21 Comments

View All Comments

  • teklord1@yahoo.com - Monday, April 13, 2020 - link

    Anyone have a recommendation on the best 32 or 64 gig ddr4 ram kit for overclocking. I read that you can't mix 2 kits together. I've built workstations before but this is the first big gaming rig. Reply

Log in

Don't have an account? Sign up now