Comparing the Quad Cores: CPU Tests

As a straight up comparison between what Intel offered in terms of quad cores, here’s an analysis of all the results for the 2600K, 2600K overclocked, and Intel’s final quad-core with HyperThreading chip for desktop, the 7700K.

On our CPU tests, the Core i7-2600K when overclocked to a 4.7 GHz all-core frequency (and with DDR3-2400 memory) offers anywhere from 10-24% increase in performance against the stock settings with Intel maximum supported frequency memory. Users liked the 2600K because of this – there were sizable gains to be had, and Intel’s immediate replacements to the 2600K didn’t offer the same level of boost or difference in performance.

However, when compared to the Core i7-7700K, Intel’s final quad-core with HyperThreading processor, users were able to get another 8-29% performance on top of that. Depending on the CPU workload, it would be very easy to see how a user could justify getting the latest quad core processor and feeling the benefits for more modern day workloads, such as rendering or encoding, especially given how the gaming market has turned more into a streaming culture. For the more traditional workflows, such as PCMark or our legacy tests, only gains of 5-12% are seen, which is what we would have seen back when some of these newer tests were no longer so relevant.

As for the Core i7-9700K, which has eight full cores and now sits in the spot of Intel’s best Core i7 processor, performance gains are very much more tangible, and almost double in a lot of cases against an overclocked Core i7-2600K (and more than double against one at stock).

The CPU case is clear: Intel’s last quad core with hyperthreading is an obvious upgrade for a 2600K user, even before you overclock it, and the 9700K which is almost the same launch price parity is definitely an easy sell. The gaming side of the equation isn’t so rosy though.

Comparing the Quad Cores: GPU Tests

Modern games today are running at higher resolutions and quality settings than the Core i7-2600K did when it was first launch, as well as new physics features, new APIs, and new gaming engines that can take advantage of the latest advances in CPU instructions as well as CPU-to-GPU connectivity. For our gaming benchmarks, we test with four tests of settings on each game (720p, 1080p, 1440p-4K, and 4K+) using a GTX 1080, which is one of last generations high-end gaming cards, and something that a number of Core i7 users might own for high-end gaming.

When the Core i7-2600K was launched, 1080p gaming was all the rage. I don’t think I purchased a monitor bigger than 1080p until 2012, and before then I was clan gaming on screens that could have been as low as 1366x768. The point here is that with modern games at older resolutions like 1080p, we do see a sizeable gain when the 2600K is overclocked. A 22% gain in frame rates from a 34% overclock sounds more than reasonable to any high-end focused gamer. Intel only managed to improve on that by 12% over the next few years to the Core i7-7700K, relying mostly on frequency gains. It’s not until the 9700K, with more cores and running games that actually know what to do with them, do we see another jump up in performance.

However, all those gains are muted at a higher resolutions setting, such as 1440p. Going from an overclocked 2600K to a brand new 9700K only gives a 9% increase in frame rates for modern games. At an enthusiast 4K setting, the results across the board are almost equal. As resolutions are getting higher, even with modern physics and instructions and APIs, the bulk of the workload is still on the GPU, and even the Core i7-2600K is powerful enough for it. There is the odd title where having the newer chip helps a lot more, but it’s in the minority.

That is, at least on average frame rates. Modern games and modern testing methods now test percentile frame rates, and the results are a little different.

Here the results look a little worse for the Core i7-2600K and a bit better for the Core i7-9700K, but on the whole the broad picture is the same for percentile results as it is for average frame results. In the individual results, we see some odd outliers, such as Ashes of the Singularity which was 15% down on percentiles at 4K for a stock 2600K, but the 9700K was only 6% higher than an overclocked 2600K, but like the average frame rates, it is really title dependent.

Power Consumption Conclusions
Comments Locked

213 Comments

View All Comments

  • cwolf78 - Friday, May 10, 2019 - link

    Is there any way you can do a similar comparison with the i5 CPUs? I have a 3570k OC to 4.2 GHz and its starting to struggle in some games. E.g., I can get over 60 fps in AC Odyssey for the most part, but there's all sorts of annoying spikes where the min FPS will tank for whatever reason. I'm running a GTX 970 that's OC'ed pretty close to a 980 and I don't know if it would be worth upgrading that or if my CPU would strangle anything faster. Also, whats the performance difference between an OC 3570k and a OC 3770k in modern games?
  • RSAUser - Saturday, May 11, 2019 - link

    This is mostly due to being 4 threads, that's also why I wouldn't go with anything <8 threads as you'll see it happen more and more as we all move to higher core counts.
    Plus Ubisoft has probably got the buggiest/worst optimized games, last one I can think of that was all right was Black Flag, mostly because they didn't change the engine and just changed the story line/map.
  • uibo - Friday, May 10, 2019 - link

    At what voltage did you run the 2600k?
  • abufrejoval - Friday, May 10, 2019 - link

    I owned pretty much every iteration of Intel and AMD since the 80286. I pushed them all on relatives and friends to make space for the next iteration.

    But everything since Sandy Bridge stuck around, both because there was no reason to move them out and I had kids to serve. Mine was a 2600 no-K, because I actually wanted to test VT-d and for that you needed to use a Q-chipset and -K was not supported.

    Still drives the gaming rig of one of my sons, while another has the Ivy Bridge (K this time but not delivering beyond 4 GHz). Got Haswell Xeons, 4 and 18 core, a Broadwell as Xeon-D 8 Core, Skylake in notebooks and Kaby Lakes i7-7700K in workstations and an i7-7700T in a pfSense.

    Those newer i7s were really just replacing AMDs and Core-2 systems being phased out over time, not because I was hoping for extra performance: AT made it very clear for years, that that simply won’t happen anymore with silicon physics.

    What I really wanted from Intel, more cores instead of a useless iGPU, more PCIe lanes, more memory channels I eventually got all from the e5-2696v3 I scored for less than $700 on eBay.

    Zen simply came a little too late, a couple of Phenom II x4-6 and three generations of APUs taught me not to expect great performance nor efficiency from AMD, but at least they were budget and had become reliable (unlike the K2-K3+s).

    With the family all settled and plenty of systems in all sizes and shapes the only reason to buy CPU any time soon would be to replace failed parts. And fail they just don’t, at least not the CPUs.

    And then I must have 100GB or so in DDR3, which I really don't buy again as DDR4 or 5. DDR3-2400 is really just fine with Kaby Lakes.

    I overclocked a bit here and there, mostly out of curiosity. But I got bitten far to often with reliability issues, when I was actually working on the machines and not playing around, so I keep them very close to stock for years now: And then it’s simply not worth the trouble, because the GPU/SSD/RAM is far more important or nothing will help anyway (Windows updates…).

    Nice write-up, Ian, much appreciated and not just because it confirms my own impressions.
  • WasHopingForAnHonestReview - Friday, May 10, 2019 - link

    Nice reply. Thanks. My 2600k is just cranking along as my darknet browsing machine
  • RSAUser - Saturday, May 11, 2019 - link

    The Zen chips actually have pretty good efficiency, I was expecting way worse before it came out since AMD hadn't been competitive in years. Zen 2 will be quite interesting, mostly due to the node shrinkage hopefully bringing way lower power envelopes and maybe cheaper CPUs, since we all need that saving for the mess that the GPU market has become.
  • Targon - Tuesday, May 14, 2019 - link

    Don't discount the significant IPC improvements that are expected from the third generation Ryzen processors(not the APUs which are Zen+ based from what I have read).
  • evilspoons - Friday, May 10, 2019 - link

    Still have a 2600k at 4.6 GHz with proper turbo support (slows down when idle). Went from GTX 680s in SLI to a single GTX 1080 and it plays most games just fine.

    That being said I'd love to throw in a Ryzen 7 2700X but only if one of you pays for it... 😁
  • rocky12345 - Friday, May 10, 2019 - link

    Nice flash back review thank you. I am still on a i7 2600K@5.1GHz with 32GB DDR3@2400MHz and very tight timings. It took a while to dial in the memory since Sandy does not really support this speed gracefully like it's newer brothers & sisters do. I have 2 Samsung 512GB SSD drives in raid zero so plenty fast for windows drive and some games installed as well as 2 4TB 7200RPM hard drives.

    I think some of the issues you were having with the OC 4.7GHz was probably do to either memory not 100% stable or the CPU may have just been at the edge of stable because it probably wanted just a tad bit more voltage. on my system I had random problems when it was new due to memory timings and finding just the right voltage for the CPU. After getting all of that dialed in my system is pretty much 100% stable with 5.1GHz and DDR3@2400MHz and has been running this way since 2011.

    So going from these charts for the gaming results & mine at 5.1GHz would place my system faster than the i7 7700K stock and a slightly over clocked one as well. Though I am 100% sure a i7 7700K fully overclocked would get better FPS since their IPC is like what 10%-12% better than a Sandy clock for clock and then if you throw in AVX2 My Sandy would get hammered.

    I am going to be upgrading my system this summer not because I feel my system is slow but more because I know because of it's age that something could fail such as main board or CPU and it would be costly to try to replace either of those so time for the big upgrade soon. I probably will move this system to do secondary duties and have it as a back up gaming system or there for my friends to use when we get to together for a gaming session. I have not fully decided which way to go but am leaning towards maybe AMD Ryzen with Zen 2 and at least 8/16 CPU and maybe a 12/24 CPU if they release more than 8 cores on the main stream desktops.
  • isthisavailable - Friday, May 10, 2019 - link

    Still running a i5 3450. Runs fine and maintains 60 FPS for 95% of the time.

Log in

Don't have an account? Sign up now