Test Bed and Setup

As per our processor testing policy, we take a premium category motherboard suitable for the socket, and equip the system with a suitable amount of memory running at the manufacturer's maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend out testing to include faster memory modules either at the same time as the review or a later date.

We changed Intel's reference system slightly from what they sent us, for parity. We swapped out the storage for our standard SATA drive (mostly due to issues with the Optane drive supplied), and put in our selection of GPUs for testing.

Xeon W-3175X System As Tested
  Item
CPU Intel Xeon W-3175X
CPU Cooler Asetek 690LX-PN
Motherboard ASUS Dominus Extreme
Memory 6 x 8GB Samsung DDR4-2666 RDIMM
Storage Crucial MX200 1TB
Video Card Sapphire RX 460 2GB for CPU
MSI GTX 1080 Gaming 8GB for Gaming
Chassis Anidees AI Crystal XL AR
Power Supply EVGA 1600W T2 Titanium

Other systems tested followed our usual testing procedure.

Test Setups
Intel HEDT i9-9980XE
i9-7980XE
ASRock X299
OC Formula
P1.40 TRUE
Copper
Crucial Ballistix
4x4GB
DDR4-2666
AMD TR4 TR2 2970WX
TR2 2920X
ASUS ROG
X399 Zenith
1501 Enermax
Liqtech TR4
Corsair Vengeance
RGB Pro 4x8GB
DDR4-2933
TR2 2990WX
TR2 2950X
ASUS ROG
X399 Zenith
0508 Enermax
Liqtech TR4
G.Skill FlareX
4x8GB
DDR4-2933
EPYC SP3 EPYC 7601 GIGABYTE
MW51-HP0
F1 Enermax
Liqtech TR4
Micron LRDIMMs
8x128GB
DDR4-2666
GPU Sapphire RX 460 2GB (CPU Tests)
MSI GTX 1080 Gaming 8G (Gaming Tests)
PSU Corsair AX860i
Corsair AX1200i
SSD Crucial MX200 1TB
OS Windows 10 x64 RS3 1709
Spectre and Meltdown Patched
VRM Supplimented with SST-FHP141-VF 173 CFM fans

 

W-3175X Power Consumption and Overclocking Our New Testing Suite for 2018 and 2019
Comments Locked

136 Comments

View All Comments

  • silverblue - Thursday, January 31, 2019 - link

    Future bought the bulk of Purch not too long ago, but if it's same old same old, then I agree.
  • Cooe - Wednesday, January 30, 2019 - link

    Until these benches are all repeated in Linux all of these results are wortheless. Nobody would buy these CPU's for a Windows machine, and the 2990WX is totally borked by running in Windows as well.
  • WasHopingForAnHonestReview - Wednesday, January 30, 2019 - link

    True but the 2990WX is 1300$ cheaper and gives roughly the same performance. No one is going to buy this intel chip unless they have money to burn.
  • maroon1 - Wednesday, January 30, 2019 - link

    Same performance ?! Did you look a the benchmarks ?! w-3175x is cleary winning in majority of benchmarks (and some benchmarks should big advantage for w-3175x)

    I agree about price, but performance is not same
  • MattZN - Wednesday, January 30, 2019 - link

    It depends on what precise application(s) you are running. But yes, the performance is about the same. Those benchmarks are pretty broken for a host of reasons... windows scheduler nonwithstanding, looking at a bunch of benchmarks doesn't really tell you a whole lot about how a machine will work in your actual environment.

    All that matters is whether the machine's performance affects your workflow in a noticeable way or not. Nobody is going to justify buying something like this if all they get out of it is a 15 minute faster encoding on a 2-hour job. Imagine that! Let alone a few seconds here and there, or a slightly slower or faster frame rate. For longer jobs you'll notice if something takes half the time. You won't notice if something is 20% slower or 20% faster. You just won't.

    Many video encoding workloads are GPU accelerated, for example. Many are run as overnight batches, for example. If you go through all the benchmarks in this article, almost none of them are even remotely relevant to actual use cases. The Blender one maybe, Handbrake, and Adobe Premier and that's just about it. And surprise, surprise, the TR2950X or TR2990WX actually wins some of those.

    For example, does anyone actually care how fast 7-zip runs? I sure as heck don't! I zip something up, it's well neigh instantaneous on just about any machine. Encryption? Nobody cares, it isn't a use case that anyone will notice. Office applications like spreadsheets? Come on... that's ridiculous. A 2-core mobile CPU can update a spreadsheet just as fast as one of these behemoths.

    -Matt
  • GreenReaper - Thursday, January 31, 2019 - link

    It does kinda matter for server-level ctivities. Say you have a SQL dump that you want to backup without using too much transfer. You can't run nightly backups until it's done. Even compressed it's 4GB. I use xz but it's essentially the same as 7-zip. More threads and faster threads can make a significant difference in run time, and in turn this impacts when you can backup or how much data you can handle on the system.

    I think you may be mistaken about the 20% difference if it effectively means you have to pay 20% more people. The question, as always, is is the price and other costs associated worth the improvement.
  • FMinus - Friday, February 1, 2019 - link

    Why would you do any of that on this chip that sucks 600W, for all of your listed task a dedicated server chip would be better, you run them in batches over night as said, so the speed really does not matter at that point.

    This chip here is intended as a workstation work horse, and yes, with the price of the single chip and the expensive motherboards (which we still don't know if they will be available to the end-user directly) makes this an quite pointless platform, except if you are running Adobe Premiere 24/7.

    For everything else you are better of with the cheaper AMD and Intel solutions, and you can get multiple systems of those for the price of one of these 3175X systems, split the work load or make them work together and they deliver faster results.
  • tamalero - Friday, February 1, 2019 - link

    Not everyone has access to full blown server rendering farms. A lot of remote workers or freelancers would render with this "behemoth". Not everyone can blow 10,000 USD to have a bunch of EPYC servers just standing by.

    Still.. This thing doesnt seem THAT good compared to AMD's (both price, performance and power usage) to justify it.
    only the AVX512 benches I guess.

    But then.. Zen2 is supposed to double the output of AVX if I remember correctly.
  • WasHopingForAnHonestReview - Thursday, January 31, 2019 - link

    7zip and some specific renders... The time saving isnt much. Its not even close to make this a worthwhile buy. When you take into account the windows scheduler bug fix coming... The amd TR for $1300 is still the obvious winner.
  • eddman - Wednesday, January 30, 2019 - link

    "No one is going to buy this intel chip unless they have money to burn."

    So it's not "No one" then.

    I suppose 3D modeling and rendering studios or individuals that have lots of customers will probably be quite ok with buying these. That price is nothing compared to their income. They probably care more about reducing rendering time than saving a few thousand dollars, which they can recoup in probably a week or two.

Log in

Don't have an account? Sign up now