Power Management Features

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

For many NVMe SSDs, the closely related matter of thermal management can also be important. M.2 SSDs can concentrate a lot of power in a very small space. They may also be used in locations with high ambient temperatures and poor cooling, such as tucked under a GPU on a desktop motherboard, or in a poorly-ventilated notebook.

Corsair Force MP510
NVMe Power and Thermal Management Features
Controller Phison PS5012-E12
Firmware ECFM11.0
NVMe
Version
Feature Status
1.0 Number of operational (active) power states 2
1.1 Number of non-operational (idle) power states 3
Autonomous Power State Transition (APST) Supported
1.2 Warning Temperature 70 °C
Critical Temperature 90 °C
1.3 Host Controlled Thermal Management Supported
 Non-Operational Power State Permissive Mode Not Supported

The Corsair Force MP510 implements all the usual NVMe power management features and has a comfortably high thermal throttling point. The drive's declared maximum power levels for the active power states look alarmingly high, but our testing didn't push the MP510 anywhere near the claimed 10.73W peak. The idle power states advertise low idle power with quick transition latencies, and our testing of power state 3 shows that the drive isn't exaggerating at all.

Corsair Force MP510
NVMe Power States
Controller Phison PS5012-E12
Firmware ECFM11.0
Power
State
Maximum
Power
Active/Idle Entry
Latency
Exit
Latency
PS 0 10.73 W Active - -
PS 1 7.69 W Active - -
PS 2 6.18 W Active - -
PS 3 49 mW Idle 2 ms 2 ms
PS 4 1.8 mW Idle 25 ms 25 ms

Note that the above tables reflect only the information provided by the drive to the OS. The power and latency numbers are often very conservative estimates, but they are what the OS uses to determine which idle states to use and how long to wait before dropping to a deeper idle state.

Idle Power Measurement

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks.

We report two idle power measurements. Active idle is representative of a typical desktop, where none of the advanced PCIe link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. The idle power consumption metric is measured with PCIe Active State Power Management L1.2 state enabled and NVMe APST enabled if supported.

Active Idle Power Consumption (No LPM)Idle Power Consumption

The Corsair Force MP510 has the best active idle power consumption we've seen from a high-end NVMe SSD, and with APST enabled it is second only to Silicon Motion's latest generation of NVMe controllers in deep sleep power savings on our desktop testbed.

Idle Wake-Up Latency

This is complemented by a nice quick wakeup from sleep, so aggressive power management settings won't hurt system responsiveness.

Mixed Read/Write Performance Conclusion
Comments Locked

42 Comments

View All Comments

  • ATC9001 - Friday, October 19, 2018 - link

    Not bad...competition is good to drive prices down, but if I were in the market for an nvme drive I'd take the HP EX920 1TB for 199!
  • euler007 - Friday, October 19, 2018 - link

    I'm really liking these prices. If RAM comes down in price a new PC is in my future.
  • enzotiger - Friday, October 19, 2018 - link

    Please check your numbers. Random read IOPS of 610K is not only by far the highest IOPS among M.2, it actually beats Optane 905P. Highly suspicious.
  • Billy Tallis - Monday, October 22, 2018 - link

    The 610k IOPS for random reads is the advertised specifications from Corsair, not my own measurements. I don't test consumer drives at queue depths high enough to determine whether it can actually hit 610k IOPS, because that doesn't come close to representing any real consumer workload.
  • Hxx - Friday, October 19, 2018 - link

    those prices are wrong right? I see the 480 gb model for 240+ at amazon unless amazon is price gouging.
  • eek2121 - Saturday, October 20, 2018 - link

    All the big retailers have algorithms to automatically shift pricing based on supply vs demand. Anandtech lists the MSRPs, but if everyone rushes out to buy the drive at once, Amazon, Newegg, etc. want to make as much money as possible while still balancing supply vs demand, so the price automatically shifts up. I'm surprised people haven't figured this out yet. That's why you wait for demand to drop before buying a product.
  • ballsystemlord - Sunday, October 21, 2018 - link

    Tallis, where are the 4k sequential read and write tests? I have a use case for them!
  • Billy Tallis - Monday, October 22, 2018 - link

    I doubt it. Whatever OS and filesystem you are using is likely to have a prefetch mechanism that make your small block sequential reads into mostly large block reads, and write caching that will batch up small block sequential writes. If you're trying to bypass the write cache for small block writes, then you probably need to be shopping for an enterprise SSD.
  • ballsystemlord - Monday, October 22, 2018 - link

    Ok. Thanks!
  • Violet Giraffe - Tuesday, November 13, 2018 - link

    I'm keen to think a lot of real-life use cases are bound on small block reading speed. E. g. databases.

Log in

Don't have an account? Sign up now