Random Read Performance

Our first test of random read performance uses very short bursts of operations issued one at a time with no queuing. The drives are given enough idle time between bursts to yield an overall duty cycle of 20%, so thermal throttling is impossible. Each burst consists of a total of 32MB of 4kB random reads, from a 16GB span of the disk. The total data read is 1GB.

Burst 4kB Random Read (Queue Depth 1)

The Intel SSD 660p delivers excellent random read performance from its SLC cache, coming in behind only the drives using Silicon Motion's higher-end controllers with Intel/Micron TLC. When reading data from a full drive where background processing is probably still ocurring, the performance is halved but remains slightly ahead of the Intel 600p.

Our sustained random read performance is similar to the random read test from our 2015 test suite: queue depths from 1 to 32 are tested, and the average performance and power efficiency across QD1, QD2 and QD4 are reported as the primary scores. Each queue depth is tested for one minute or 32GB of data transferred, whichever is shorter. After each queue depth is tested, the drive is given up to one minute to cool off so that the higher queue depths are unlikely to be affected by accumulated heat build-up. The individual read operations are again 4kB, and cover a 64GB span of the drive.

Sustained 4kB Random Read

On the longer random read test, the 660p maintains its outstanding SLC cache performance that beats anything else currently on the market, but filling the drive it is slower than almost any other NVMe SSD - the exception being the Toshiba RC100 that doesn't use a large enough host memory buffer for the data range this test covers.

Sustained 4kB Random Read (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

With the combination of lower power consumption afforded by its small NVMe controller and excellent random read performance, the Intel 660p earns the top efficiency score for this test. When it's slowed down by being full and still grinding away at background cleanup, its efficiency is much worse but still an improvement over the 600p.

At high queue depths the 660p's random read speed begins to fall behind high-end NVMe SSDs, but it isn't significant until well beyond the queue depths that are relevant to real-world client/consumer usage patterns.

Random Write Performance

Our test of random write burst performance is structured similarly to the random read burst test, but each burst is only 4MB and the total test length is 128MB. The 4kB random write operations are distributed over a 16GB span of the drive, and the operations are issued one at a time with no queuing.

Burst 4kB Random Write (Queue Depth 1)

The burst random write speed of the Intel SSD 660p is not record-setting, but it is comparable to high-end NVMe SSDs.

As with the sustained random read test, our sustained 4kB random write test runs for up to one minute or 32GB per queue depth, covering a 64GB span of the drive and giving the drive up to 1 minute of idle time between queue depths to allow for write caches to be flushed and for the drive to cool down.

Sustained 4kB Random Write

On the longer random write test, the 660p is slower than most high-end NVMe SSDs but still performs much better than the other entry-level NVMe drives or the SATA drive. After filling the drive (and consequently the SLC write cache), the performance drops below the SATA drive but is still more than twice as fast as the Toshiba RC100.

Sustained 4kB Random Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

Power efficiency when performing random writes to a clean SLC cache is not quite the best we've measured, but it is far ahead of what the other low-end NVMe SSD drives or the Crucial MX500 SATA drive can manage

After QD4 the 660p starts to show signs of filling the SLC write cache, which is a little bit sooner than expected given how large the SLC cache should be for the mostly-empty drive condition. The performance doesn't drop very far, showing that the idle time is enough for the drive to mostly keep up with flushing the SLC cache when the test is writing to the drive with a 50% duty cycle.

AnandTech Storage Bench - Light Sequential Performance
Comments Locked

86 Comments

View All Comments

  • southleft - Tuesday, May 14, 2019 - link

    SSDs replaced under warranty by the maker can sometimes have a silver lining, so to speak. Some years ago we had an Intel X25 80GB fail. Intel replaced it with a newer model 320 which was basically the same but updated to SATA III. We also had a Sandisk Ultra 120GB fail, and Sandisk replaced it with an Ultra 2. These newer replacement models are still running OK some 6 years later, for what it's worth!
  • chrcoluk - Wednesday, September 25, 2019 - link

    I agree, this is more important than hitting embargo date for publishing.

    Its the content not the date that matters. If it takes a year to do it, then so be it. I never buy hardware on release date, to me that's just stupid.
  • Oxford Guy - Tuesday, August 7, 2018 - link

    People trusted Samsung with the 840 and then, oops...

    The real rule is verify then trust.
  • mapesdhs - Wednesday, August 8, 2018 - link

    One thing about the 840 EVO issue which was a real pain was trying to find out if the same thing affected the standard 840. In the end my conclusion was yes, but few sites bothered to mention it. Oddly enough, of the many SSDs I have, one of the very few that did die was a standard 840. I never bought an 840 EVO because of the reports that came out, but I have a fair few 840 Pros and a heck of a lot of OCZs.
  • Spunjji - Wednesday, August 8, 2018 - link

    It was pretty obvious that the 840 was affected because it used the same NAND as the 840 Evo, just without the caching mode. It was also pretty obvious that Samsung didn't care because it was "old" so they never properly fixed it.
  • OwCH - Wednesday, August 8, 2018 - link

    Ryan, I love that you will. It is not easy for the user to find real world data on these things and it is, at least to me, information that I want before making the decision to buy a drive.

    Looking forward to it!

    Thanks!
  • Solid State Brain - Tuesday, August 7, 2018 - link

    The stated write endurance should already factor data retention, if it follows JEDEC specifications (JESD219A). For consumer drives, it should be be when the retention time for freshly stored data drops below 1 year after the SSD is powered off, at 30°C.
  • BurntMyBacon - Wednesday, August 8, 2018 - link

    The Samsung 840 EVO would like to have a word with you.
  • eastcoast_pete - Wednesday, August 8, 2018 - link

    Yes, it should factor data retention, and it should follow JEDEC specs. The problem is the "should". That doesn't mean it or they do. I found that "Trust but verify" is as important in IT as it is in life. Even the biggest names screw up, at least occasionally.
  • IntenvidiAMD - Tuesday, August 7, 2018 - link

    Are there any reviewers that do test that?

Log in

Don't have an account? Sign up now