Shadow of Mordor

The next title in our testing is a battle of system performance with the open world action-adventure title, Middle Earth: Shadow of Mordor (SoM for short). Produced by Monolith and using the LithTech Jupiter EX engine and numerous detail add-ons, SoM goes for detail and complexity. The main story itself was written by the same writer as Red Dead Redemption, and it received Zero Punctuation’s Game of The Year in 2014.

A 2014 game is fairly old to be testing now, however SoM has a stable code and player base, and can still stress a PC down to the ones and zeroes. At the time, SoM was unique, offering a dynamic screen resolution setting allowing users to render at high resolutions that are then scaled down to the monitor. This form of natural oversampling was designed to let the user experience a truer vision of what the developers wanted, assuming you had the graphics hardware to power it but had a sub-4K monitor.

The title has an in-game benchmark, for which we run with an automated script implement the graphics settings, select the benchmark, and parse the frame-time output which is dumped on the drive. The graphics settings include standard options such as Graphical Quality, Lighting, Mesh, Motion Blur, Shadow Quality, Textures, Vegetation Range, Depth of Field, Transparency and Tessellation. There are standard presets as well.

We run the benchmark at 1080p and a native 4K, using our 4K monitors, at the Ultra preset. Results are averaged across four runs and we report the average frame rate, 99th percentile frame rate, and time under analysis.

All of our benchmark results can also be found in our benchmark engine, Bench.

 

ASRock RX 580 Performance

Shadow of Mordor (1080p, Ultra)Shadow of Mordor (1080p, Ultra)

Shadow of Mordor (4K, Ultra)Shadow of Mordor (4K, Ultra)

GPU Tests: Civilization 6 GPU Tests: Rise of the Tomb Raider
Comments Locked

111 Comments

View All Comments

  • peevee - Monday, June 11, 2018 - link

    8086 being slower than 8700 just indicates an error in your methodology.
    For example, one has updated microcode for exploits and another does not.
  • TheinsanegamerN - Monday, June 18, 2018 - link

    OOORrrrr....its a different motherboard, not the usual test bed. The motherboard used for this is an asrock board, which explains the difference in performance.
  • Memo.Ray - Monday, June 11, 2018 - link

    As I mentioned in my comment in the other article a couple of days ago:

    Intel managed to give away 8086 "binned" 8700K (AKA 8086K) and still make some money on top of it. win-win situation :D

    https://www.anandtech.com/comments/12940/intels-co...
  • Xenphor - Monday, June 11, 2018 - link

    How did they get such a lower score on the Dolphin benchmark with a 5ghz overclock on the 8086k? Isn't the benchmark single core only and considering the 8086 already turbos to 5ghz on a single core, why would there be that much of a difference? I tried it on my 8700k at 5ghz and only get a score of about 265-270 with 2666mhz ram.
  • Ian Cutress - Monday, June 11, 2018 - link

    The 5.0 GHz turbo, at stock, doesn't kick in that often. Depends on how the software sets its own affinity, and most do not. This is the danger with only single core turbo - with all the modern software in the background, even with Windows and scheduling, you rarely hit single core Turbo.
  • Xenphor - Monday, June 11, 2018 - link

    I suppose but even on the Dolphin forums spreadsheet the highest score is a 249 which is a 7700k at 5.2ghz.
  • Ian Cutress - Tuesday, June 12, 2018 - link

    I'll retest when I'm back home at the end of the week and recovered from jet lag
  • Xenphor - Tuesday, June 12, 2018 - link

    Well don't feel like you have to. Just thought it was weird.
  • Vatharian - Monday, June 11, 2018 - link

    7 years ago, first batches of Core i7-2600K (like mine) were able to reach stable 5.0-5.2 GHz on water, on all 4 cores. Given 7 years difference and 32 vs 14 nm, I am maybe not disappointed (there are +2 cores, half a CPU more), but rather not amused. IPC is higher, that's one, DDR4 can reach 3 times higher frequencies than DDR3, that's two, so there are improvements, but given the bovine excrement that goes on chipset side and PCI-Express connectivity it's clear to see the stagnation.
  • SanX - Monday, June 11, 2018 - link

    Total flop. The processor in your phone is probably more hi-tech, has more transistors, more cores, and was made on more advances factories with 10nm litho being all sold below $25.

Log in

Don't have an account? Sign up now