Conclusion: It Changes Our Results

When we first published our Ryzen-2000 series review, with HPET forced as the timer in the operating system, our results were broadly showing that the new processors leading the pack. In light of the audit, especially with the way that the Intel gaming results have changed, paint a different picture.

At 1080p, the Core i7-8700K has a clear lead in most titles, although that lead does somewhat vanish moving to 4K, except with Civilization. Ultimately for any user pushing the pixel count, in our tests for the most part, the chips retain parity performance. AMD’s claims for the Ryzen-2000 launch were more focused on the 1440p gaming, however it is clear that there is still margin that benefits Intel at the most popular resolutions, such as 1080p.

Why This Matters, and How AnandTech is Set to Test in the Future

The interesting thing to come out of both Intel and AMD is that they seem to not worry if HPET is enabled or not. Regardless of the advice in the past, both companies seem to be satisfied when HPET is enabled in the BIOS and irreverent when HPET is forced in the OS. For AMD, the result change was slight but notable. For Intel we saw substantial drops in performance when HPET was the forced timer, and removing that lock improved performance.

It would be odd to hear if Intel are not seeing these results internally, and I would expect them to be including an explicit mention of ensuring the HPET settings in the operating system in every testing guide. Or Intel's thinking could be that because HPET not being forced is the default OS position, they might not see it as a setting they need to explicitly mention in their reviewer guides. Unfortunately, this opens up possibilities when it comes to overclocking software interfering with how the timers are being used.

As noted above, overclocking and monitoring tools like Ryzen Master request a restart when used for the first time in order to make sufficient changes to the system to run correctly. Some of this software will be forcing HPET in the BCD in order to enable what it needs to do, and the adjustment is unlikely to be explicitly mentioned in the request to restart. In a standard review, it is typically expected that each system will have a fresh OS and fresh software install, such that systems are tested as if it were new. For any user looking to tune the system, this is the point where any potential software issues could occur. Now should a reviewer decide to first analyze the software bundled with the system before testing or after testing could have significantly different results. It can create a conundrum, as has clearly been the case for us.

Moving forward, the immediate goal here at AnandTech is to ensure that our readers have the most up-to-date and correct results, particularly for our Ryzen 2000-series review. As a result, we are taking a few steps both immediately and in the future to correct our data, update our Ryzen 2000-series review, and to prevent this issue going forward.

First and foremost, we have decided that force-enabling HPET is not how we want to test systems, as this is non-default behavior. While it has an important role in extreme overclocking, to verify accurate timing, ultimately it was akin to taking a sledgehammer to cracking an egg for our testing - we need to be testing systems at stock. So all further CPU testing going forward will be using HPET's default behavior, and we have even put checks in our scripts to ensure this is now the case.

As a result we are retracting our existing results for all of the processors we used in the Ryzen 2000-series review. This goes for both the review and for Bench. All of these products will be updated with revised results using the default HPET behavior just as soon as the updated data is available over the course of the next week. In fact we're already the process of running this updated testing, which we've used for this article and uploaded to Bench.

The end goal here is to cover most of the popular processors from the previous few generations on our existing 2017 benchmark suite in order to fully update and republish our Ryzen 2000-series review. Meanwhile, because the results in that review are still being updated, the conclusion for that review is also being retracted. We don't anticipate updated results meaningfully changing that conclusion, but it is inappropriate to have a conclusion remain published until we have all of the data we need.

Longer-term, because this issue goes back further than just the Ryzen 2000-series review and we are already on the cusp of organizing our 2018 CPU benchmarking suite, we're also accelerating our rollout of that suite. After replacing the data for key hardware on that 2017 test suite, we will be rolling out the 2018 update in earnest. The 2018 CPU benchmarking suite will upgrade to the latest software, drivers, and a change-up on games (F1 2017, Shadow of War, Far Cry 5; also had requests for Deus Ex). Our 2018 suite will require that Spectre and Meltdown patches are in place for the systems we test, to ensure that everyone has access to the latest data.

(ed: It should be noted that this only affects Ian's CPU review data; Brett and Nate run different tools in their laptop and GPU reviews respectively)

Overall we expect to be done collecting data to finish and update the Ryzen 2000-series review next week. After that, it will take some time to roll out the 2018 CPU benchmarking suite data, but that should only be on the order of weeks assuming that there are no further surprises (ed: knock on wood).

We also would like to give all of our readers and colleagues a sincere thank you for assisting with this analysis. We continually strive to publish the best possible data, so your input is and always will be invaluable for finding patterns and oddities we may have missed.

Finally, while we're on the subject of timers, we'd like to throw out an open-ended question to everyone: given what we've found, should the use/requirement of HPET in software be made clearer? Or is there a risk that information being more confusing than helpful? One of the issues we grappled with in writing this article is that while HPET can have a performance impact, it's also not necessarily wrong to use it given its unique accuracy. So we're interested in hearing from all of you on how you think the use of HPET should be documented, so that users aren't caught off-guard by the potential performance impact..

 

Update: 04/26

HPET and Invariant TSC

Since publishing this follow up, several readers have reached out about their experiences with timers, as well as offering deeper explanations of some of the key points in this article. I will attempt to cover some of them here.

The main on-die CPU timer is the Time Stamp Counter (TSC), which was one of the main timers in single core systems. With the movement to multi-core, HPET became the new more accurate timer that as described can protect against clock drift. HPET was preferred to TSC, but can take 10-100x longer to be probed, due to its location on the chipset. The industry however is moving back towards TSC through an Invariant TSC (ITSC), which is a version of TSC that is stable through CPU frequency changes and C-state changes. The ITSC is accessed through the RDTSC instruction, which can be used simultaneously by both the kernel and user code if permitted (unlike HPET, which is a locked timer), and is sufficient for multi-core systems. And although this method still has the RTC bias issue, the lower latency is favoured by all, except overclockers adjusting the platform's 100 MHz base frequency.

TL;DR: HPET can take 1000s of cycles to read, and reading it with multiple cores compounds the issue. Invariant TSC, as a core instruction, is a potential solution with lower latency already in use.

“There is a HPET Bug, No Intel is Not Cheating” and TimerBench

Matthias from Overclockers.at reached out to me and linked me to his article on how they have previously encountered the issue. The article is a nice read, and well worth clicking through:

The HPET bug: What it is and what it isn't

Matthais explains how during their X299 testing, they were experiencing slowdown in their game benchmarks, and pin-pointing the problem with HPET. (We also had similar issues, and didn’t post results, but never got to the bottom of the issue.) As a result, the team over at Overclockers.at developed a tool called TimerBench in order to determine the effect of HPET. As noted, HPET has a much longer latency, but is more accurate.

In the results from overclockers.at one metric stood out: moving from Broadwell-E to Skylake-X meant that the number of theoretical peak HPET calls per second reduced from 1.4 million to 0.2 million – the latency to make a HPET call suddenly became 7x longer with Skylake-X. TimerBench, the tool developed, provides an Unreal 4.7.2 scene and measures timer calls between a system running a game, and one without.

For our results, we used TimerBench on each system with a GTX 1080 in 1920x1080 mode, running fullscreen.

With the HPET timer, the i7-8700K system went from 214k timer calls per second outside of a game down to 144k timer calls per second, which is about the same fraction as with the ITSC timer. The big difference however is the frame rate, decreasing from 289 FPS with ITSC to 238 FPS with HPET, as well as the average GPU load, down from 97.6% to 78.1%. This is shown in the maximum frame time as well.

TimerBench 1.3: GTX 1080 at 1920x1080p
  ITSC HPET Frames
Per Second
Average
GPU Load
Calls OS Calls Game Calls OS Calls
Game
ITSC HPET ITSC HPET
Desktop: GTX 1080 at 1920x1080
Ryzen 7 1800X 27.7m 2.0m 0.4m 0.3m 283 279 96% 95%
Core i7-8700K 40.3m 2.7m 0.2m 0.1m 289 238 98% 78%
Core i7-7820X 35.5m 2.4m 0.2m 0.1m 285 252 95% 83%
Core i7-6700K 36.1m 2.3m 0.2m 0.1m 286 258 96% 85%
Core i7-6950X* 91.8m 1.3m 1.1m 0.6m 285 262 98% 96%
Mobile: MX 150 at 800x600
Core i7-8550U 34.3m 0.9m 0.2m 0.06m 148 137 - -


* No Spectre/Meltdown Patches

When I correlate this data with the systems I have currently running, we see that the AMD Ryzen 7 1800X system is not particularly affected, but all of our Intel systems are: Skylake-S, Skylake-X, Coffee Lake, and even our mobile device. What is clear that the HPET timer is causing performance degredation by virtue of having a lower average GPU load. If the GPU is waiting on the same timing delays caused by HPET, this would lover the overall GPU load.

So this interesting correlation leads me to think that maybe this issue, aside from potential Spectre/Meltdown related points, is related to the chipset. HPET circuits are normally found on the chipset/southbridge, and in this case Intel has a wide HSIO chipset design in all the systems tested. As the chipset is, among other things, a PCIe switch, then it has various buffers to deal with the data coming in and out. The effect of these wide chipset and buffers might be part of the HPET issue. I need to go dig out an older system.

Forcing HPET On, Plus Spectre and Meltdown Patches
Comments Locked

242 Comments

View All Comments

  • bbertram - Wednesday, April 25, 2018 - link

    Well this is interesting! This could have serious implications.

    Googled HPET really quick and found this: https://www.reddit.com/r/Planetside/comments/416ns...

    and then I found this link from that thread....a little ironic.

    https://forums.anandtech.com/threads/do-you-have-h...
  • bbertram - Wednesday, April 25, 2018 - link

    An interesting article that talks more about the issue. They look to even have a benchmark to show the impact. The video is also very interesting. The more I research this problem the more i see its been know for a very long time now.

    https://tinyurl.com/yd8qsh7w
  • bbertram - Wednesday, April 25, 2018 - link

    ohhh...more nice info: https://tinyurl.com/yd39zw8c
  • _mat - Wednesday, April 25, 2018 - link

    Very thorough article. I like to point out a few things though, that may add some information to this.

    AMD and especially Intel have swept this problem under the rug since the launch of Skylake X. I noticed this problem while benching for a review and initially thought that my OS installation was the cause. After some testing I finally found the same root of evil as Ian did. At that time I made a video and called it the "Intel X299 HPET" bug (can't post a link, it was already mentioned in the comments here).

    I tried to talk to PR and engineers at Intel for quite a while and they heard about my bug report but refused to comment. Time went by and Threadripper and Coffee Lake were born, both inheriting the same slow HPET QPC timer calls. I informed Intel repeatedly, still no comment.

    During that time I wrote the following benchmark that sheds some light on the whole QPC and timer business on Windows. It shows your Windows timer configuration, gives recommendations for precision and performance, provides a way to bench your QPC timer in a synthetic and a game test and gives easy access to change TSC to HPET and vice versa.

    As I am not able to post a link here, please search for "TimerBench", you will be able to download it.

    I am also the author of GPUPI, one of those benchmarks for overclockers mentioned in the article that enforced HPET timers for secure timing a while back. Since discovering the HPET bug I have pulled back on this restriction. Since Skylake HPET is no longer necessary to avoid BCLK skewing, iTSC is just fine. AMD is still affected though, possibly Ryzen 2 as well (Threadripper and Ryzen 1 was).
  • bbertram - Wednesday, April 25, 2018 - link

    Link to download: https://tinyurl.com/y7w6tg36

    Link to article: https://tinyurl.com/yd8qsh7w
  • Arbie - Thursday, April 26, 2018 - link

    Wow! Google translator is amazing when going from German to English!
  • mapesdhs - Sunday, May 6, 2018 - link

    Might be because English has its roots in Germanic languages. :D Old English sounds a lot like common words in Dutch, and there's a region in Germany where the way German is spoken can sound to other Germans to be rather like English (according to a German guy I know). It's all those pesky Saxons, Angles, etc. :D
  • TrackSmart - Wednesday, April 25, 2018 - link

    Thank you _mat! Hopefully your comment gets attention here at Anandtech, and in turn, this article and your work get some attention from Intel. On the AMD side, it sounds like enabling HPET has only a small penalty in most cases, but those differences on the Intel side are very troubling. At the very least we should be forewarned!
  • Dark_wizzie - Wednesday, April 25, 2018 - link

    What software causes HPET to be forced on in Windows? I have multiple software installed but it still appears off.
  • Dec666 - Wednesday, April 25, 2018 - link

    Hi, AT.

    First of all, I wanted to thank you for an extreme effort you put in your reviews and analysis.

    My thinking on the subject is that if you disable HPET in OS, this may make your numbers and review conclusion be irrelevant to the real world scenarios. As you have said, many programs (like video streaming, monitoring/overclocking, and potentially motherboard software (not to say about Ryzen Master)) require HPET to be enabled in OS and they will force it during the installation process and most likely won’t inform you about this. That means, that if you’ve installed all the software you going to use on fresh OS (and/or fresh PC), it is very possible that some of that software will have HPET forced and you won’t know about it.

    To my mind, most of people, who read CPU reviews, are enthusiasts and/or those, who want to make a decision on CPU purchase by themselves. The majority of people will just buy PC based on others’ opinion or consultant’s advise. So those, for whom 10% difference in performance matters, and/or those, who bought expensive GPU like 1080/1080ti, will probably use monitoring software like HWinfo or Afterburner. That means, that HPET will be forced on their systems. That means, that they will have real world numbers close to what you’ve got in the original Ryzen 2000 review.

    Another thing is that by disabling HPET in OS, while doing tests for a new review, you will hide the problem with it on Intel systems. People will not consider this as a potential performance hit or disadvantage of Intel platform in general.

    Moreover, I suspect that in future more programs and, probably, next-gen games will require HPET (in order to better synchronize even more threads). Since most of people buy CPU for more than one year, they will have potentially worse experience with Intel CPUs in future, compared to AMD CPUs.

    So it looks more logical to me to test CPUs with HPET forced (for all software), but have additional tests with HPET disabled for just games in order to have games tested with HPET both on and off. That will emphasize the problem. For me this is the same reason why it is important to test hardware with all Smeltdown patches and BIOS updates installed.

    Thanks.

Log in

Don't have an account? Sign up now