Final Thoughts

What I wanted to showcase with this article was not only the particular advances of the Kirin 970, but also to use it as an opportunity to refresh everyone on the competitive landscape of the high-end Android SoC market. As the modern, post-iPhone smartphone ecosystem enters its 10-year anniversary, we’re seeing the increasing consolidation and vertical integration of the silicon that power today’s devices.

I wouldn’t necessarily say that Apple is the SoC trend setter that other companies are trying to copy, as much as other vendors are coming to the same conclusion Apple has: to be able to evolve and compete in a mature ecosystem you need to be able to control the silicon roadmap yourself. Otherwise you fall into the risk of not being able to differentiate from other vendors using similar component stacks, or risk not being competitive against those vendors who do have vertical integration. Apple was early to recognize this, and to date Huawei has been the only other OEM able actually realize this goal towards quasi-silicon independence.

I say quasi-independence because while the companies are designing their own SoCs, they are still relying on designs from the big IP licensing firms for key components such as the CPUs or GPUs. The Kirin 970 for example doesn’t really manage to differentiate itself from the Snapdragon 835 in regards to CPU performance or efficiency, as both ARM Cortex-A73 powered parts end up end up within margins of error of each other.

Snapdragon 820’s Kryo CPU core was a hard sell against a faster, more efficient, and smaller Cortex-A72. Samsung’s custom CPU efforts fared slightly better than Qualcomm’s, however the Exynos M1 and M2 haven’t yet managed to present a proper differentiating advantage against ARM’s CPUs. Samsung LSI’s performance claims for the Exynos 9810 are definitely eye-brow raising and might finally mark the point where years of investment and development on a custom CPU truly pay off, but Samsung’s mobile division has yet to demonstrate true and committed vertical integration. Considering all of this, HiSilicon’s decision to stick with ARM CPUs makes sense.

While Qualcomm has backpedalled on using its custom CPU designs in mobile, the company does demonstrate the potential and advantages of controlling your own IP designs when it comes to the GPU. To draw parallels, on the desktop GPU side of things we already see the competitive and market consequences of one vendor having a ~33% efficiency advantage (Nvidia GeForce GTX 1080 vs AMD Radeon Vega 64). Just imagine that disparity increasing to over 75-90%, and that’s currently the state that we have in the mobile landscape (Snapdragon 835 vs Kirin 970). In both cases silicon vendors can compensate for efficiency and performance by going with a larger GPU, something that is largely invisible to the experience of the end-user but definitely an unsustainable solution as it eats into the gross margin of the silicon vendor. With PPA disparities on the high end nearing factors of 4x it definitely gives moment to pause and wonder where we’ll be heading in the next couple of years.

Beyond CPU, GPU and modem IP, SoCs have a lot more component blocks that are generally less talked about. Media blocks such as encoder/decoders eventually end up summarized as feature-checkboxes going up to X*Y resolution at Z frames per second. Even more esoteric are the camera pipelines such as the ISPs of modern SoCs. Here the lack of knowledge of how they work of what the capabilities are both part due to the silicon vendor’s secrecy but also due to the fact that currently truly differentiating camera experiences are defined by software algorithm implementations. The Kirin 970’s new use a Cadence Tensilica Vision P6 DSP definitely uplifts the camera capabilities of the devices powered by the new SoC, but that’s something that we’ll cover in a future device-centric review.

The NPU is a new class of IP whose uses are still in its infancy. Did the Kirin 970 need to have it included to be competitive? No. Does its addition make it more competitive? Yes. Well, maybe. With the software ecosystem lagging behind it’s still early to say how crucial neural network acceleration IPs in smartphones will become, and we have sort of a chicken-or-egg sort of situation where certain use-cases might simply not be feasible without the hardware. The marketing advantages for Huawei have been loud and clear, and it looks industry wide adoption is inevitable and on its way. I don’t foresee myself recommending or not recommending a device based on its existing, or lack of “AI” capabilities for some time to come, and similarly consumers should apply a wait & see approach to the whole topic.

While going on a lot of tangents and comparisons against competitors, the article’s main topic was the Kirin 970. HiSilicon’s new chipset proves itself as an excellent smartphone SoC that's well-able to compete with Qualcomm’s and Samsung’s best SoCs. There’s still a looming release schedule disadvantage as Huawei doesn’t follow the usual spring Android device refresh cycle, and we expect newer SoCs to naturally leapfrog the Kirin 970. This might change in the future as both semiconductor manufacturing and IP roadmaps might become out of sync with the spring device product launches.

I come back to the fact that Huawei is only one of two OEM vendors – and the only Android vendor – whom is leveraging vertical integratation between their SoC designs and the final phones. The company has come a long way over the past few years and we’ve seen solid, generational improvements in both silicon as well as the complete phones. What is most important is that the company is able to put both reasonable goals and execute on its targets. Talking to HiSilicon I also see the important trait of self-awareness of short-comings and the need to improve in key areas. Intel’s Andy Grove motto of “only the paranoid survive” seems apt to apply to Huawei as I think the company is heading towards the right directions in the mobile business and a key reason for their success. 

NPU Performance & Huawei's Use-cases
Comments Locked

116 Comments

View All Comments

  • Ratman6161 - Wednesday, January 24, 2018 - link

    Personally I think Samsung is in a great position...wheather you consider them "truly vertically integrated" or not. One thing to remember is that most often, Samsung flagship devices come in two variants. It's mostly in the US where we get the Qualcomm variants while elsewhere tends to get Exynos. The dual source is a great arrangement because every once in a while Qualcomm is going to turn out a something problematic like the Snapdragon 810. When that happens Samsung has the option to use its own which is what they did with the Galaxy S6/Note 5 generation which was Exynos only.

    Another point is: what do you consider "truly vertically integrated". The story cites Apple and Huewai but they don't actually manufacture their SOC's and neither does Qualcomm. I believe the Kirin SOC's are actually manufactured by TSMC while Apple and Qualcomm SOC's have at various times been actually manufactured in Samsung FABs. As far as I know, Samsung is the only company that even has the capability to design and also manufacture their own SOC. So in a way, you could say that my Samsung Note 5 is about the most vertically integrated phone there is, along with non-US versions of the S7 and S8 generations. In those cases you have a samsung SOC manufactured in a Samsung FAB in a Samsung phone with a Samsung screen etc. Don't make the mistake of thinking the whole world is just like us...they aren't. Also many of the screens for other brands are also of Samsung manufacture so you have to keep in mind that there is a lot more to the device than the SOC
  • fred666 - Monday, January 22, 2018 - link

    Huawei only uses HiSilicon SoCs? Nothing from Qualcomm?
  • Andrei Frumusanu - Monday, January 22, 2018 - link

    They've used Qualcomm chip-sets and still do use them in segments they can't fill with their own SoCs.
  • niva - Monday, January 22, 2018 - link

    So they still use QC chips, but unlike them, Samsung isn't vertically integrated because they use QC chips.

    Get out of here.
  • Dr. Swag - Monday, January 22, 2018 - link

    His point is Huawei only uses non-HiSilicon chips in price segments that they do not have SoCs for. Samsung, however, does sometimes use QC silicon even if they have SoCs that can fill that segment (e.g. Samsung uses the Snapdragon 835s even though they have the 8895).

    I'm not saying that I agree with Andrei's view, but there is a difference.
  • niva - Tuesday, January 23, 2018 - link

    I completely disagree with the assessment that Samsung is somehow not "as vertically integrated" as Huawei. Samsung is not just vertically integrated, it produces components for many other key players in the market. They have reasons why they CHOOSE not to use their SOCs in specific markets and areas. Some of the rationale behind those choices may be questioned, but it's a choice. I too think that the world would be a better place if they actually put their own chip designs into their phones and directly competed against Qualcom. That of course might be the end of Qualcom and a whole lot of other companies... Samsung can easily turn into a monopoly that suffocates the entire market, so it's not just veritcal, but horizontal integration. What Huawei has accomplished in short order is impressive, but isn't Huawei just another branch of the Chinese government at this point? Sure yeah, their country is more vertically integrated. Maybe that's the line to take to justify the statement...
  • levizx - Monday, February 26, 2018 - link

    No, it's not INTEGRATED because it doesn't prefer its own over outsourcing. Samsung Mobile department runs separately from its Semiconductor department which act as a contractor no different than Qualcomm.

    As for Huawei being a branch of the Chinese government, it's as true as Google being part of the US government. Stop spruiking conspiracy theory. I know for a fact their employees almost fully owns the company.
  • KarlKastor - Thursday, January 25, 2018 - link

    Well, that's not true. Huawei choose the Snapdragon 625 in the Nova. Why not use their own Kirin 600 Series? it is the same market segment.

    Samsung only opts for Snapdragon, where they have no own SoCs: all regions with CDMA2000 Networks.
    In all other regions, europe for example, they ship all smartphones frome the J- and A-Series to the S-Series and Note with their Exynos SoCs.
  • yslee - Tuesday, January 30, 2018 - link

    You keep on repeating that line, but where I am we have no CDMA2000 networks and still get Snapdragon Samsungs.
  • levizx - Monday, February 26, 2018 - link

    That's also not true, Samsung uses Snapdragon where there's no CDMA2000 as well. Huawei used to use VIA's 55nm CBP8.2D over Snapdragon.

    Mid-tier is not so indicative compared to higher end devices when it comes to, well everything. They may even outsource the ENTIRE DESIGN to a third party, and still proves nothing in particular. They might have chosen S625 because of supply issues which is completely reasonable. Same can not be applied to Samsung, since there's no such thing as supply issues when it comes to Exynos and Snapdragon.

Log in

Don't have an account? Sign up now