Sequential Read Performance

Our first test of sequential read performance uses short bursts of 128MB, issued as 128kB operations with no queuing. The test averages performance across eight bursts for a total of 1GB of data transferred from a drive containing 16GB of data. Between each burst the drive is given enough idle time to keep the overall duty cycle at 20%.

Burst 128kB Sequential Read (Queue Depth 1)

The Crucial MX500 turns in another record-setting burst performance score with its sequential read results, but by the smallest margin yet. It's about 6% faster on this test than most mainstream SATA SSDs.

Our test of sustained sequential reads uses queue depths from 1 to 32, with the performance and power scores computed as the average of QD1, QD2 and QD4. Each queue depth is tested for up to one minute or 32GB transferred, from a drive containing 64GB of data.

Sustained 128kB Sequential Read

The sustained sequential read performance of the Crucial MX500 puts it in second place, behind the Samsung 850 PRO and 850 EVO. The MX500 does have a slight advantage over the other 64L 3D TLC drives, and improves on the MX300's performance by an impressive 100 MB/s.

Sustained 128kB Sequential Read (Power Efficiency)

The power efficiency of the Crucial MX500 during sequential reads is mediocre and clearly worse than the other 64L 3D TLC drives, including the Intel 545s. The MX500 is slightly more efficient than the Samsung 850 PRO and EVO, and scores 21% higher than the MX300.

The Samsung 850 PRO and EVO are the only drives that continuously saturate the SATA bus from QD2 onwards with no drops in performance. The MX500's performance is reasonably steady but does drop a bit as the test wears on.

Sequential Write Performance

Our test of sequential write burst performance is structured identically to the sequential read burst performance test save for the direction of the data transfer. Each burst writes 128MB as 128kB operations issued at QD1, for a total of 1GB of data written to a drive containing 16GB of data.

Burst 128kB Sequential Write (Queue Depth 1)

For once, the burst performance of the Crucial MX500 doesn't set a record. Its QD1 sequential write speed is only second-fastest, about 3% slower than the Samsung 850 PRO.

Our test of sustained sequential writes is structured identically to our sustained sequential read test, save for the direction of the data transfers. Queue depths range from 1 to 32 and each queue depth is tested for up to one minute or 32GB, followed by up to one minute of idle time for the drive to cool off and perform garbage collection. The test is confined to a 64GB span of the drive.

Sustained 128kB Sequential Write

The sustained sequential write speed of the MX500 is the same as the MX300, putting them in the second tier of performance behind the Samsung 850 PRO and EVO and the MLC-based Patriot Ignite.

Sustained 128kB Sequential Write (Power Efficiency)

The Crucial MX500 scores great on power efficiency during sequential writes, but not quite as well as the MX300. The OCZ VX500 with its reduced DRAM cache holds on to first place and the Toshiba TR200 (entirely DRAMless) comes in right behind the MX500. The mainstream 3D TLC drives are all much less efficient.

Only a few drives offer a higher sustained sequential write speed than the MX500 after reaching saturation. The Samsung drives and the Patriot Ignite are faster at all queue depths and much less pwoer efficient than the MX500, while the OCZ VX500 stumbles at QD2 before saturating with slightly higher throughput and substantially lower power consumption. The MX300 is a bit faster than the MX500 at QD2 but slightly slower at higher queue depths.

Random Performance Mixed Read/Write Performance
Comments Locked

90 Comments

View All Comments

  • peevee - Tuesday, December 19, 2017 - link

    "SMI controllers tend to be more popular for budget products"... "Silicon Motion has been working to improve their controllers and move toward the high end, but the MX500 isn't even adopting the newer SM2259"... "but they're not as large or numerous as on previous MX series drives"

    race to the bottom.
  • MajGenRelativity - Tuesday, December 19, 2017 - link

    Did you look at the improved performance numbers? I'm not sure how that supports a race to the bottom
  • Wolfpup - Tuesday, December 19, 2017 - link

    Ugh, is EVERYONE using TLC now? I was uncomfortable enough with MLC.

    I'm not crazy about switching away from Marvell either...though I suppose as long as it works and the software Micron writes is good...

    I really want a higher end MLC (or SLC!) drive from Crucial/Micron.

    My main system is still using a 2012 Crucial drive though. It literally launches programs in maybe 1-2 seconds MAX, so who the heck cares if it were 42x faster? (Literally the only time I've ever see it take any actual time to respond to anything was when I was doing something else while running TRIM on it for no real reason.)

    But my next drive I'd like to be MLC Crucial/Micron too...
  • MajGenRelativity - Tuesday, December 19, 2017 - link

    BX300 is your best bet
  • smilingcrow - Tuesday, December 19, 2017 - link

    Don't waste your time with SLC but look at Optane.
  • MajGenRelativity - Tuesday, December 19, 2017 - link

    That's another alternative
  • valinor89 - Tuesday, December 19, 2017 - link

    Optane is a first gen product... I think I will pass this round and watch for the next generations .

    Also, Optane is not in the same price range as "conventional" SSD.
  • extide - Wednesday, December 20, 2017 - link

    It's a bit higher but not outrageous by any means. It's FAR cheaper than several of the early SSD's I bought in terms of $/GB. Frankly for its performance, I think it's priced pretty aggressively, TBH.
  • DanNeely - Tuesday, December 19, 2017 - link

    SLC is dead in anything except very non-mainstream products (eg low capacity embedded flash built on a process so large that even doing ECC is optional), at only 1/3 the density of TLC per chip it's nowhere near cost competitive. The same factor is killing off MLC as 3d TLC improves. I suspect over the next year or three MLC flash will gradually fade away too.

    If they can get the total write count up high enough, QLC will start displacing TLC over the next few years. That number was only a few dozen writes a few years ago; I haven't seen any updates since then. OTOH over similar timespans TLC write endurance has climbed from a few hundred writes to a few thousand; if QLC has been able to improve equally we might start seeing it soon in entry level products.
  • jjj - Tuesday, December 19, 2017 - link

    You seem to have a negative opinion on 3D TLC for no good reason while also not requiring much perf.
    If your current drive is from 2012, a Crucial m4 that was fashionable back then, has 72TB endurance while the this MX500 has 360TB for the 1TB version and 180TB for the 500GB.version.

Log in

Don't have an account? Sign up now