Who is the Optane SSD 900P for?

With a price per GB a little over twice that of the the fastest flash-based consumer SSDs, the Optane SSD 900P is an exclusive high-end product. For most desktop usage, drives like the 960 PRO are already fast enough to make storage no longer a severe bottleneck. The most noticeable delays due to storage performance on a 960 PRO are when moving around large files, and the Optane SSD doesn't offer any significant improvement to sequential transfer speeds. Random writes can be a challenge for flash-based SSDs, but volatile write caches and SLC caches allow them to handle short bursts with very high performance.

The unprecedented random read performance of the Optane SSD 900P is its biggest strength on paper, but not one that will often lead to a proportional speedup in overall application performance. Too many programs and filesystems are still designed with mechanical hard drive performance in mind as the baseline, and further increases to SSD performance serve mainly to shift the bottlenecks further onto the CPU, RAM, network, and even the user's own reaction time.

The scenarios where a drive like the Optane SSD 900P can offer meaningful and worthwhile performance improvements can be broadly categorized as as situations where the Optane SSD can help with one of two problems:

1. Storage is too slow

About the only time a desktop could challenge the sequential access performance of a high-end PCIe SSD (based on flash or 3D XPoint) is when dealing with high resolution uncompressed video. The Optane SSD doesn't help much here because of its limited capacity, and the PCIe 3 x4 link itself is a bottleneck at the highest refresh rates and bit depths. For video work, flash-based SSDs are definitely a better choice, and RAID arrays of cheaper SATA SSDs may be a better option than PCIe SSDs. Desktop workloads that require extremely high sustained random write performance are very rare, and SLC caching on a flash-based SSD nicely takes care of most realistic quantities of random writes.

That said, there are some situations where higher random read performance can be quite noticeable. Searching through a large volume of data is a common case, such as searching through a video, but it usually presents enough opportunities for parallelization that the drive's queue depth will climb up to the range where flash-based SSDs come close to the Optane SSD. Game level load times can in theory benefit greatly from faster read speeds, but in practice decompressing the assets after loading them into RAM quickly becomes the bottleneck. Most of the other situations where the performance advantage of the Optane SSD will really help are better described as a different kind of problem:

2. RAM is too small

In the workstation market, there are abundant examples of compute tasks with a memory working set that doesn't fit in RAM. Almost any simulation or rendering task will have a parameter for mesh density or particle count that can very quickly scale the memory requirements from a few GB to tens or hundreds of GB. An Optane SSD is far slower than four to eight channels of DDR4, but 16GB DIMMs are least 6-7 times more expensive per GB than the Optane SSD 900P, and putting more than 128GB of DRAM in an ATX motherboard is even more expensive.

Intel PR provided an example of using SideFX Houdini to render a high-resolution animation that included a 1.1 billion particle water simulation. Their test used a machine with a 10-core CPU and 64GB of RAM, and compared the 512GB Samsung 960 PRO against the 480GB Optane SSD 900P. The total memory requirements (DRAM+swap) of the rendering job were not disclosed, but the resulting 2.7x speedup is very plausible for a task that absolutely hammers the swap device. With a sufficiently high thread count to keep the queue depth high, that margin could be narrower (especially with the fastest 2TB 960 PRO), but then context switch overhead would become problematic. With the Optane SSD 900P, the random read latency is low enough that it would be hard to host more than two swap-limited threads per core without context switch overhead wasting more time than waiting on the SSD.

Star Citizen Bundle

Even though gaming isn't the ideal workload for the Optane SSD 900P to show off its performance, Intel is marketing the 900P to gaming enthusiasts. They're bundling a code for the game Star Citizen with the 900P, and including a new in-game spaceship variant as an exclusive item for Optane SSD customers. Intel has partnered with Star Citizen developer Roberts Space Industries (RSI) to hold a launch event for the 900P at CitizenCon 2017 today, which they are streaming live on Twitch and YouTube. Attendees will have the chance to playtest the Intel-exclusive Sabre Raven ship, but it is still undergoing final QA and will not be immediately available to Optane SSD 900P customers. The web page for redeeming the Star Citizen game code had not gone live as of the time of writing, so I was unable to attempt any testing with the game. (ed: I remember when AMD was offering a Star Citizen bundle in 2014 as well. The game still hasn't shipped.)

At the media briefing for the 900P, an RSI representative said they are exploring ways to optimize the Star Citizen experience on Optane SSDs, but not many specifics were provided. One approach under consideration is using less compression for some game assets, freeing up CPU time but relying on high storage performance. It didn't sound like this work was close to release. In the game's current state, RSI claims they've seen load times improve by 20-25%, but they didn't specify what other storage device they were comparing against.

Introduction Drive Features
POST A COMMENT

204 Comments

View All Comments

  • phaethon1 - Tuesday, November 14, 2017 - link

    Nice post,

    I read in multiple channels about this SSD being able to be used as extra RAM. Then I contacted the technical support of Intel, and they do not have any clue about a software to enable this feature. Any ideas?
    Reply
  • extide - Friday, October 27, 2017 - link

    SLC might be faster in sequential, but if you want sequential stripe a bunch of platters ..

    Also, I didn't say bit-level, I said block level. They present 512b blocks so you would assume the drive manages 'pages' in the size of 512b even though the underlying memory can be more fine-grained. SLC can't do that, plus there is still the whole garbage collection thing. If your hypothetical drive was actually a good idea, someone would make it. That's proof enough that it's not.
    Reply
  • ddriver - Friday, October 27, 2017 - link

    They didn't make one not because it is not good enough, but because it would be too good.

    That would set a bad precedent. Before you know it, people will start demanding quality rather than being content with what the industry dictates to them.

    Of course, if hypetane manages to make enough a hole in the pockets of big players, we will definitely be seeing some of that long-possible, deliberately untapped potential coming to life.

    "That's proof enough that it's not."

    You know, they make trucks that drive 24/7, under huge loads, and can go much long without maintenance than a regular personal vehicle. That's proof enough that the industry doesn't make things as good as it can, obviously, if it can make a heavily used and loaded truck more durable, that would be not only possible, but actually much easier to achieve for a regular car that's driven less, under less load. Yet they don't make it, even if that ends up costing human lives. And the reason for that is moar profit. Which is why they chose to only overbuild trucks, because that too maximizes profits. But not cars. Cars are far more profitable if need more servicing, and that doesn't result in profit losses as it would if it was commercial trucks, and if underbuilt cars end up costing human lives, that's a small price to pay for more profit. Engineering wise, is entirely possible and easily doable to make a car about 10 times more durable, and requiring 10 times less maintenance, and 10 times safer too, but they'd rather get the extra profit. And keep good engineering exclusive to military and commercial production.

    The reason they haven't made it is they didn't have a reason to make it. And the reason intel did hypetane is only because it has been a very long time since they did anything new. They had that in the works, and decided to release it in order to demonstrate some innovation, unfortunately, not without shamelessly lying about how well it will perform in advance.
    Reply
  • Xpl1c1t - Friday, October 27, 2017 - link

    ddriver, i like your analysis. maybe the review system just wasnt equipped with rgb lighting, that would explain at least one order of magnitude of error in their results vs Intel's promises Reply
  • jospoortvliet - Friday, November 03, 2017 - link

    > Engineering wise, is entirely possible and easily doable to make a car about 10 times more durable, and requiring 10 times less maintenance, and 10 times safer too, but they'd rather get the extra profit. And keep good engineering exclusive to military and commercial production.

    Well, yes, they care about their profits: nobody would buy such a super-durable car because it would cost 5-10x the price and people will go for the cheaper car, even though it has higher maintenance cost. This is true for nearly ANY product on the market: sure, you could built houses more durable, or bikes, or... you name it. But people prefer 'good enough' over 'perfect', always have. And they're not entirely stupid - many products' practical life time is fine, people quite like buying a new car every 3-5 years. Or new cups. Or new forks and knives.

    Yes, some folks pay the 10x price to get the perfect, durable stuff. But most buy pressed wood closets at Ikea and are happy with it.
    Reply
  • Gastec - Saturday, March 10, 2018 - link

    I'm not sure if you are both ironic or are just too rich to think straight. Reply
  • AlishaScott - Sunday, October 29, 2017 - link

    I just got paid $6784 working off my laptop this month. And if you think that’s cool, my divorced friend has twin toddlers and made over $9k her first month. It feels so good making so much money when other people have to work for so much less. This is what I do... http://cutt.us/O5gex Reply
  • Nails6365 - Monday, November 06, 2017 - link

    Thank you for your in-depth analysis.

    Given the opportunity to make a high-end rig. What would you choose ?
    Reply
  • Jared13000 - Tuesday, May 22, 2018 - link

    You’re not giving Optane enough credit, you don't necessarily compare a NAND based drive to an Optane based drive. Compare NAND to Optane, as NAND has had years of development pored into hiding its short comings that Optane has not yet had.

    I just built a small all flash hyper converged cluster and after setup I was getting about 500,000 random read IOPS on a quad node cluster with triple mirrored storage. Write speeds were about 1,000 IOPS, basically hard drive speeds across the 16 SSDs in the cluster.

    Was it bad drivers, miss configuration, ethernet flow control issues?

    None of the above. It was the drive cache. Storage spaces disabled it due to the drives not having power loss protection. Enabled the cache on all the drives to avoid direct NAND writes and now the cluster can push nearly 280,000 write IOPS. This mean with cache the drives are over 200 times faster than just writing directly to NAND.

    What does this have to do with Optane? As far as I have been able to find, Optane drives don't have or need a cache. Their performance is direct to storage, without cache!

    Taken in the context of NAND vs Optane, 1,000x may be embellished, but probably not by much. At this point PCIe overhead and lack of software optimization may be the only reason it’s not 1,000x faster when comparing modern NAND memory.

    It's not that much faster comparing a whole NAND drive with well implemented cache to an Optane drive, but some situations can't rely on cache. Also, a simpler drive should be more reliable, in theory.

    As it is Optane is unrivaled until someone manages to bring a drive to market with SLC NAND and nonvolatile cache like MRAM for about twice the cost of a 970 PRO.

    Just a thought, a 970 PRO 512 GB has an MSRP of $329 and the Intel 900p 280 GB has it’s MSRP at $329 as well. That is 256 GB of SLC flash vs 280 GB of Optane. Comparing an MLC drive to an SLC drive at half the capacity is a bit like comparing apples and oranges, but it’s a start for an estimate. Trade the DRAM for MRAM and bump the capacity a bit and it’s hard to imagine that a SLC NAND based drive with MRAM wouldn’t cost more than Optane.

    If you expected 1,000 times SSDs that are getting multiple gigabytes per second reads and writes, then you were looking for a drive faster than CPU cache. Intel really needs to watch their wording, but that does not make this a bad product.
    Reply
  • CheapSushi - Friday, October 27, 2017 - link

    Well, then wait for Samsung's Z-NAND, which is MLC/TLC NAND treated like SLC. Reply

Log in

Don't have an account? Sign up now