AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)

The Intel Optane SSD 900P doesn't come in first place for overall data rate on the Light test, until the drives are filled and the average data rate of all the flash-based SSDs takes a big hit.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The average and 99th percentile latencies of the Optane SSD on the Light test are on par with the top flash-based SSDs when the test is run on an empty drive. When the drives are filled before the test, the flash-based SSDs slow down enough that the Optane SSD takes first place easily, with an especially wide margin on the 99th percentile latency.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

The average read latency of the Optane SSD 900P on the Light test is merely tied for first place, when the test is run on an empty drive. When the drives are filled, the Optane SSD has half the average read latency of anything else. The write latency situation is quite different; whether or not the drives are filled, most of the top flash-based SSDs are able to fit the bursts of writes in their caches and deliver better latency than the uncached writes of the Optane SSD.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)

The 99th percentile read latency of the Optane SSD 900P on the Light test is tied for first place when the test is run on an empty drive, and leads by more than 60% when the drives are filled before the test. The 99th percentile write latency lags behind the top flash-based SSDs a bit, but nowhere near enough to be noticeable: the latency is still an order of magnitude lower than SATA SSDs.

AnandTech Storage Bench - Heavy Random Performance
Comments Locked

205 Comments

View All Comments

  • Lolimaster - Saturday, October 28, 2017 - link

    The past is the past, few years ago, a 20GB HDD cost $200 so?
  • btb - Saturday, October 28, 2017 - link

    Does the Optane 900P have support for hardware based Bitlocker encryption?

    Currently I have a motherboard with a TPM, and an SSD with Microsoft eDrive/TCG Opal/IEEE 1667 support, and thus support for hardware based(not software) Bitlocker.

    Would the Optane work in a similar manner, if I use it as a boot drive?
  • voicequal - Saturday, October 28, 2017 - link

    Mixed reads & writes are a significant weak spot for SSD performance, where a sequential write workload can degrade a sequential read workload and vice versa. It looks like Optane has completely resolved this (no more bathtub curve). It would be interesting to see a mixed sequential test with QD > 1, so that both read & write requests are in the queue. In theory, throughput could be 2x under 50/50 mixed workloads if Optane is fast enough to saturate the full duplex paths, like the PCIe bus, in both directions.
  • evilpaul666 - Saturday, October 28, 2017 - link

    I ordered a 480GB AIC version from the popular online vendor. I was surprised it was actually available. Seems to be bucking a trend this year.

    Hopefully, Intel ironed out the bugs and there won't be crashes until multiple firmware updates over the next year.

    Anecdotally, I've heard good things about improved UX. I'll find out in a few days. It's replacing an Intel 750 400GB from about two years ago.
  • Mikewind Dale - Saturday, October 28, 2017 - link

    This is awesome. But what excites me most is using XPoint to replace RAM.

    I wonder, can we get an approximate simulation of what that world could be like, by making a system with a deliberately minuscule amount of RAM, installing a 32 GB Optane module, and setting the Windows page file to be on that Optane module? I'd be interested to see some benchmarks.
  • evilpaul666 - Saturday, October 28, 2017 - link

    There was a demo of a system with only 4GB RAM that was supposed to have had good results.
  • "Bullwinkle J Moose" - Saturday, October 28, 2017 - link

    Would System Start-up be any faster?
    ---------------------------------------------------
    Faster that what? Apples to Bannana's?

    A 35 Watt Dualcore Sandy bridge will boot a fresh install of Windows 10 Fall Crapper Edition (Sept 2017) in 5.35 seconds to a Samsung 850 Pro

    or, the same computer will boot a fresh install of Windows XP-SP2 in 3 - 4 seconds (it varies every boot)

    Then, I've seen people bragging on youtube for booting new 90+ Watt Quadcore machines to Windows 10 on an M.2 drive in 17 seconds

    So, wutz your opinion?
    How fast is fast ?
  • cheshirster - Sunday, October 29, 2017 - link

    Those prices are FAKE.
  • CaedenV - Sunday, October 29, 2017 - link

    Come on Intel! Storage isn't what this tech is made for! This was supposed to have faster throughput and act as a RAM replacement, not SSD replacement! Being able to replace RAM and storage with something that is slightly slower than RAM, but the capacity of a large SSD would have huge benefits. Imagine 'launching' a program and all that needs to be done is to flip a flag from inactive to active and your whole program is up and running. No loading from the HDD/SSD into RAM, just activate a section of memory and update the windows registry keys if needed. Having direct HDD/SSD access to the CPU without needing to load into RAM first. These would be huge advantages. But instead Intel saw that it wasnt going to be good enough for that so they released what they had as a way to cash in and make up for all of the wasted R&D on this tech over the years.

    Granted; it is not ALL bad. For consumers this would be like burning money. But for business use this is amazing tech. At my work we have a huge document management system with some ~6 million documents in it, and 200+ users running searches on them all the time. On HDD these searches would take just over a minute. We recently moved the search cache to SSDs which dropped the search time down to ~10-20 sec. With Optane we could lower it to near instant search times. Not going to do it any time soon, but there is absolutely a market for this kind of tech in the business IT world. I just don't understand why Intel is marketing it to gamers.
  • Reflex - Sunday, October 29, 2017 - link

    To be fair, the software ecosystem is a decade or more behind the concept of unified memory. Even if this was a capable RAM replacement today, nothing could take advantage of it, and wouldn't be able to for a very long time.

Log in

Don't have an account? Sign up now