Power Management

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks.

We report two idle power measurements. Active idle is representative of a typical desktop, where none of the advanced PCIe link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. The idle power consumption metric is measured with PCIe Active State Power Management L1.2 state enabled and NVMe APST enabled.

Active Idle Power Consumption (No LPM)Idle Power Consumption

Our ADATA XPG SX950 didn't seem to ever make use of the slumber power state; it draws about 0.8W with or without power management enabled. This is a relatively high active idle power draw for a SATA SSD, and the lack of deeper idle is unacceptable for mobile use.

Idle Wake-Up Latency

The bright side of not using any deep idle states is that the ADATA XPG SX950 doesn't take any time to wake up; the 16µs latency we measured is pretty much all on the host side. Phison's SATA drives also do very well on this metric, and the rest all need more than half a millisecond to wake up.

Mixed Read/Write Performance Conclusion
Comments Locked

45 Comments

View All Comments

  • Cliff34 - Monday, October 9, 2017 - link

    It is almost for almost all your needs, budget or performance, better stick with Samsung's SSDs.
  • Chaitanya - Monday, October 9, 2017 - link

    Sadly Adata has diarrhea when it comes to releasing SSDs. They drop too many SSDs on market too fast.
  • chrnochime - Tuesday, October 10, 2017 - link

    You!= everyone under the sun. And no not everyone wants to be stuck with a freakin TLC SSD, as much as you'd like to believe. How hard can that be to grasp? Wait rhetorical question LOL
  • Dr. Swag - Monday, October 9, 2017 - link

    Is ADATA out of their minds? This drive performs on the budget end of the spectrum yet they're pricing it above the 850 pro?!?
  • jardows2 - Monday, October 9, 2017 - link

    Before I read the article, I thought I knew the conclusion - It will perform under Samsung products, and be priced a bit too high for the comparative performance. I guess I was highly optimistic about this drive! What is up with that price?
  • Flunk - Monday, October 9, 2017 - link

    ADATA's pricing is truely perplexing. Maybe their market is "people who don't read SSD reviews", so they think they can write "premium" on the box and it justifies the price. Maybe they're pricing just so they can have it 50% off MSRP all the time. Regardless, I'd argue there isn't really such thing as a premium SATA SSD anymore because even budget NVMe drives throttle them.

    4x PCI-E 3.0 is 32Gbps, Fully 4 times the bandwidth of SATA 3. That's not a generational leap, it's a whole new ballgame, especially if you consider the reduction in overhead that comes with NVMe. SATA drives are now relegated to being upgrades for older desktops and notebooks, there is no "high-end" left.
  • ddriver - Monday, October 9, 2017 - link

    sata 3 is 6 gbits, IIRC 6 * 4 is 24

    Also, 4 times faster drive doesn't make a system 4 times faster. It is true that before SSDs, storage was pretty much the bottleneck, but if you look at real world benchmarks, the difference between a SATA and a NVME SSD is a few percents in 99% of the cases.
  • xeroshadow - Monday, October 9, 2017 - link

    I can attest to this. I went from an Intel 330 series to NVMe Samsung 960 and barely noticed any difference except in some launch speeds of certain programs. I was disappointed.
  • Samus - Monday, October 9, 2017 - link

    It's like CPU's. Programs just haven't caught up to their capability yet. Other than mass data transfer (between SSD's no less) you are likely to see any real-world performance boost from NVMe over SATA3. Decompressing is the only area I personally benefit from NVMe; it unRAR's files much faster than a SATA3 drive.

    But gaming, general usage, and even content creation I don't notice a difference.
  • saratoga4 - Monday, October 9, 2017 - link

    It's because while the transfer rate of high end NVMe drives is much higher, that really doesn't help you load a few dozen 10 MB files all that much faster. For lots of small to medium sized files, you need lower access latency, and NVME drives are little better than SATA, so until that improves the main place NVME will have an edge is copying files between NVME drives.

Log in

Don't have an account? Sign up now