Mixed Random Performance

Our test of mixed random reads and writes covers mixes varying from pure reads to pure writes at 10% increments. Each mix is tested for up to 1 minute or 32GB of data transferred. The test is conducted with a queue depth of 4, and is limited to a 64GB span of the drive. In between each mix, the drive is given idle time of up to one minute so that the overall duty cycle is 50%.

Mixed 4kB Random Read/Write

The overall performance of the ADATA XPG SX950 on the mixed random I/O test is just a bit average, and about 20% slower than Samsung's SATA drives.

Mixed 4kB Random Read/Write (Power Efficiency)

The power efficiency of the SX950 looks a bit better, but the Samsung 850 EVO managed to tie for first place on performance wile holding a substantial lead on power efficiency. The SX950 does hold a slight efficiency advantage over the Samsung 850 PRO on this test.

The SX950's power consumption is very flat across the varying workloads of this test, while the performance improves steadily as the share of writes grows. The top-performing Samsung drives start out about 40MB/s faster than the SX950 and most drives show a more significant performance spike when they reach the all-writes phase of the test.

Mixed Sequential Performance

Our test of mixed sequential reads and writes differs from the mixed random I/O test by performing 128kB sequential accesses rather than 4kB accesses at random locations, and the sequential test is conducted at queue depth 1. The range of mixes tested is the same, and the timing and limits on data transfers are also the same as above.

Mixed 128kB Sequential Read/Write

The mixed sequential I/O performance of the ADATA XPG SX950 is sub-par, though there are actually three planar MLC SSDs that are even slower. The Crucial BX300 is about 14% faster overall.

Mixed 128kB Sequential Read/Write (Power Efficiency)

The SX950's efficiency is tied with the Crucial BX300, and both are near the top of the chart. The DRAMless OCZ VX500 is far more efficient that the rest of these drives, and without it the SX950's efficiency score would look very good.

During the first half of this test as the proportion of writes grows, the SX950's performance increases and the power consumption drops. During the second half, the improvement falters but neither performance nor power consumption regress significantly. The Crucial BX300 is faster across the board, especially during the read-heavy parts of the test, but it requires significantly more power to deliver that higher read performance.

Sequential Performance Power Management
Comments Locked

45 Comments

View All Comments

  • Lord of the Bored - Tuesday, October 10, 2017 - link

    Nanu-nanu, as you centaurians say.
  • BrokenCrayons - Tuesday, October 10, 2017 - link

    *beep-borp* I am an alien. I am superior. *borp-borp-beep*
  • svan1971 - Wednesday, October 11, 2017 - link

    I stopped reading after I don't identify as human. To much self loathing from a no doubt educated idiot.
  • svan1971 - Wednesday, October 11, 2017 - link

    LMAO Perfect...
  • Samus - Monday, October 9, 2017 - link

    Even if the SU950 was cheaper than the BX300, I'd still rather have the BX300. I've never had to send a drive in to Crucial for warranty. Ever. Intel and Crucial have a 0% defect rate in my workplaces.

    Samsung had a number of 840 EVO's go sour years ago that resulted in a number of drive being sent in and replaced with new drives with new firmwares. In 2014 an 840 Pro even went bad, although I realize that is quite an anomaly for Samsung. The 840 EVO's were well documented to have issues.

    I've seen a number of ADATA SP500's fail, they just drop and stop detecting at POST. Before Barefoot 3, OCZ drives had all the typical issues Sandforce drives were notorious for having until the SF-2281 launched and firmware matured. Recent OCZ drives, even the ARC100 (the cheapest Barefoot drive) is reasonably reliable. One was mailed in a few months ago for warranty due to Windows detecting SMART errors. The drive didn't fail, and data was cloned to an advance replacement OCZ mailed out next-day. The OCZ warranty process was excellent, but that doesn't help a drive began to fail.

    Two Mushkin Reactors suffered the same issue seemingly years apart, they would randomly not detect, give a BSOD, and so on. The data was cloned to replacement SSD's and the Mushkin drives were RMA'd (which was a complete pain in the ass compared to OCZ with a 2 week turnaround no less) and the drives were fleabayed.

    Granted, even Intel isn't immune to problems. Fortunately I have no SSD535's out in the field. These drives are notorious for self destructing from write amplification wear, and even though a firmware was issues to fix it recently, most of those drives have already killed themselves, and if you have an OEM model like a Lenovo, you can't apply the firmware (and Lenovo - reflecting their typical "quality" support - hasn't issued a firmware update even a year after Intel made it available.)

    Overall, my point is, why would anybody buy a drive from someone other than Intel, Micron/Crucial, or Samsung? It's just a ridiculous gamble and is unlikely to save you money. There are niche drives like the Reactor that is still the cheapest 1TB SSD, so there are exceptions, but what exactly is ADATA bringing to the table that Samsung isn't with the 750, Crucial isn't with the BX300, and Intel isn't with the 600p?
  • ddriver - Monday, October 9, 2017 - link

    You poor peasants and your precious money. One's social standing is measured by how much one has spent on hardware, not the actual value of the purchase, and of course, how much RGB LEDs it has.

    Silly ADATA, still haven't figured out how to justify the higher cost of ownership due to the lack of vertical integration. 9 letters - RGB LED FTW. Why is the industry sleeping, we have RGB LEDs on mobos, coolers, ram, mice, keyboards, but not on SSD? Or maybe they are saving that for the next quantum leap in technology that's gonna leave people dazzled.

    What intel brings with the 600p is hard to topple, it sure ain't easy to make an NVME drive that lousy. I also like how certain fairly expressive enterprise intel ssd drives behave when they run out of write cycles. While other vendors drives remain read-only, giving you the possibility to retrieve or use the existing data at your leisure, intel had the ingenious idea that such drives should brick themselves on the next post cycle. Such a great and highly useful feature. Who wouldn't want that?
  • Reflex - Tuesday, October 10, 2017 - link

    @samus You poor peasant! You poor poor peasant!
  • Golgatha777 - Wednesday, October 11, 2017 - link

    Anecdotal evidence to support your last paragraph. I have probably 20 or so Intel, Crucial, and Samsung drives (75%+ being Crucial drives) spread around laptops, desktops, and even a couple of game consoles. Not one failure in the bunch. I did have to flash one of my M500 drives due to a post error, but the issue was well documented and a fix was issued within a month of it being reported by Crucial. I do own a couple of Sandisk drives, but I did my research and they use Marvell controllers and Micron RAM, so I felt like those weren't a gamble.
  • Golgatha777 - Wednesday, October 11, 2017 - link

    That should be Sandisk RAM for the Sandisk drives (Ultra IIs), not Micron.
  • leexgx - Monday, October 16, 2017 - link

    but this is a MLC drive so probably outlast most other drives

Log in

Don't have an account? Sign up now