Benchmarking Performance: CPU Office Tests

The office programs we use for benchmarking aren't specific programs per-se, but industry standard tests that hold weight with professionals. The goal of these tests is to use an array of software and techniques that a typical office user might encounter, such as video conferencing, document editing, architectural modelling, and so on and so forth.

All of our benchmark results can also be found in our benchmark engine, Bench.

Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to combile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56)

PCMark8: link

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Home (non-OpenCL)

Office: PCMark8 Work (non-OpenCL)

Benchmarking Performance: PCMark 10 Benchmarking Performance: CPU Rendering Tests
Comments Locked

152 Comments

View All Comments

  • ddriver - Monday, September 25, 2017 - link

    You are living in a world of mainstream TV functional BS.

    Quantum computing will never replace computers as we know and use them. QC is very good at a very few tasks, which classical computers are notoriously bad at. The same goes vice versa - QC suck for regular computing tasks.

    Which is OK, because we already have enough single thread performance. And all the truly demanding tasks that require more performance due to their time staking nature scale very well, often perfectly, with the addition of cores, or even nodes in a cluster mode.

    There might be some wiggle room in terms of process and material, but I am not overly optimistic seeing how we are already hitting the limits on silicon and there is no actual progress made on superior alternatives. Are they like gonna wait until they hit the wall to make something happen?

    At any rate, in 30 years, we'd be far more concerned with surviving war, drought and starvation than with computing. A problem that "solves itself" ;)
  • SharpEars - Monday, September 25, 2017 - link

    You are absolutely correct regarding quantum computing and it is photonic computing that we should be looking towards.
  • Notmyusualid - Monday, September 25, 2017 - link

    @ SharpEars

    Yes, as alluded to by IEEE. But I've not looked at it in a couple of years or so, and I think they were still struggling with an optical DRAM of sorts.
  • Gothmoth - Monday, September 25, 2017 - link

    and what have they done for the past 6 years?

    i am glad that i get more cores instead of 5-10% performance per generation.
  • Krysto - Monday, September 25, 2017 - link

    The would if they could. Improvements in IPC have been negligible since Ivy Bridge.
  • kuruk - Monday, September 25, 2017 - link

    Can you add Monero(Cryptonight) performance? Since Cryptonight requires at least 2MB of L3 cache per core for best performance, it would be nice to see how these compare to Threadripper.
  • evilpaul666 - Monday, September 25, 2017 - link

    I'd really like it if Enthusiast ECC RAM was a thing.

    I used to always run ECC on Athlons back in the Pentium III/4 days.Now with 32-128x more memory that's running 30x faster it doesn't seem like it would be a bad thing to have...
  • someonesomewherelse - Saturday, October 14, 2017 - link

    It is. Buy AMD.
  • IGTrading - Monday, September 25, 2017 - link

    I think we're being to kind on Intel.

    Despite the article clearly mentioning it in a proper and professional way, the calm tone of the conclusion seem to legitimize and make it acceptable that Intel basically deceives its customers and ships a CPU that consumes almost 16% more power than its stated TDP.

    THIS IS UNACCEPTABLE and UNPROFESSIONAL from Intel.

    I'm not "shouting" this :) , but I'm trying to underline this fact by putting it in caps.

    People could burn their systems if they design workstations and use cooling solutions for 165W TDP.

    If AMD would have done anything remotely similar, we would have seen titles like "AMD's CPU can fry eggs / system killer / motherboard breaker" and so on ...

    On the other hand, when Intel does this, it is silently, calmly and professionally deemed acceptable.

    It is my view that such a thing is not acceptable and these products should be banned from the market UNTIL Intel corrects its documentation or the power consumption.

    The i7960X fits perfectly in its TDP of 165W, how come i7980X is allowed to run wild and consume 16% more ?!

    This is similar with the way people accepted every crapping design and driver fail from nVIDIA, even DEAD GPUs while complaining about AMD's "bad drivers" that never destroyed a video card like nVIDIA did. See link : https://www.youtube.com/watch?v=dE-YM_3YBm0

    This is not cutting Intel "some slack" this is accepting shit, lies and mockery and paing 2000 USD for it.

    For 2000$ I expect the CPU to run like a Bentley for life, not like modded Mustang which will blow up if you expect it to work as reliably as a stock model.
  • whatevs - Monday, September 25, 2017 - link

    What a load of ignorance. Intel tdp is *average* power at *base* clocks, uses more power at all core turbo clocks here. Disable turbo if that's too much power for you.

Log in

Don't have an account? Sign up now