Grand Theft Auto

The highly anticipated iteration of the Grand Theft Auto franchise hit the shelves on April 14th 2015, with both AMD and NVIDIA in tow to help optimize the title. GTA doesn’t provide graphical presets, but opens up the options to users and extends the boundaries by pushing even the hardest systems to the limit using Rockstar’s Advanced Game Engine under DirectX 11. Whether the user is flying high in the mountains with long draw distances or dealing with assorted trash in the city, when cranked up to maximum it creates stunning visuals but hard work for both the CPU and the GPU.

For our test we have scripted a version of the in-game benchmark. The in-game benchmark consists of five scenarios: four short panning shots with varying lighting and weather effects, and a fifth action sequence that lasts around 90 seconds. We use only the final part of the benchmark, which combines a flight scene in a jet followed by an inner city drive-by through several intersections followed by ramming a tanker that explodes, causing other cars to explode as well. This is a mix of distance rendering followed by a detailed near-rendering action sequence, and the title thankfully spits out frame time data.

 

There are no presets for the graphics options on GTA, allowing the user to adjust options such as population density and distance scaling on sliders, but others such as texture/shadow/shader/water quality from Low to Very High. Other options include MSAA, soft shadows, post effects, shadow resolution and extended draw distance options. There is a handy option at the top which shows how much video memory the options are expected to consume, with obvious repercussions if a user requests more video memory than is present on the card (although there’s no obvious indication if you have a low-end GPU with lots of GPU memory, like an R7 240 4GB).

To that end, we run the benchmark at 1920x1080 using an average of Very High on the settings, and also at 4K using High on most of them. We take the average results of four runs, reporting frame rate averages, 99th percentiles, and our time under analysis.

All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6G Performance


1080p

4K

Sapphire Nitro R9 Fury 4G Performance


1080p

4K

Sapphire Nitro RX 480 8G Performance


1080p

4K

CPU Gaming Performance: Rocket League (1080p, 4K) Analyzing Creator Mode and Game Mode
Comments Locked

104 Comments

View All Comments

  • silverblue - Friday, August 18, 2017 - link

    I'd like to see what happens when you manually set a 2+2+2+2 core configuration, instead of enabling Game Mode. From what I've read, Game Mode destroys memory bandwidth but yields better latency, however it's not answering whether Zen cores can really benefit from the extra bandwidth that a quad-channel memory interface affords.

    Alternatively, just clock the 1950 and 1920 identically, and see if the 1920's per-core performance is any higher.
  • KAlmquist - Friday, August 18, 2017 - link

    “One of the interesting data points in our test is the Compile. Because <B>this test requires a lot of cross-core communication</B> and DRAM, we get an interesting metric where the 1950X still comes out on top due to the core counts, but because the 1920X has fewer cores per CCX, it actually falls behind the 1950X in Game Mode and the 1800X despite having more cores.”

    Generally speaking, copmpilers are single threaded, so the parallelism in a software build comes from compiling multiple source files in parallel, meaning the cross-core communication is minimal. I have no idea what MSVC is doing here, can you explain? In any case, while I appreciate you including a software development benchmark, the one you've chosen would seem to provide no useful information to anyone who doesn't use MSVC.
  • peevee - Friday, August 18, 2017 - link

    I use MSVC and it scales pretty well if you are using it right. They are doing something wrong.
  • KAlmquist - Saturday, August 19, 2017 - link

    Thanks. It makes sense that MSVC would scale about as well as any other build environment.

    ARS Technica also benchmarked a Chromium build, which I think uses MSVC, but uses the Google tools GN and Ninja to manage the build. They get:

    Ryzen 1800X (8 cores) - 9.8 build/day
    Threadripper 1920X (12 cores) - 16.7 build/day
    Threadripper 1950X (16 cores) - 18.6 build/day

    Very good speedup with the 1920X over the 1800X, but not so much going from the 1920X to the 1950X. Perhaps the benchmark is dependent on memory bandwidth and L3 cache.
  • Timur Born - Friday, August 18, 2017 - link

    Thanks for the tests!

    I would have liked to see a combination of both being tested: Game Mode to switch off the second die and SMT disabled. That way 4 full physical cores with low latency memory access would have run the games.

    Hopefully modern titles don't benefit from this, but some more "legacy" ones might like this setup even more.
  • Timur Born - Friday, August 18, 2017 - link

    Sorry, I meant 8 cores, aka 8/8 cores mode.
  • mat9v - Friday, August 18, 2017 - link

    I wish someone had an inclination to test creative mode but with games pinned to one module. It is essentially NUMA mode but with all cores active.
    Or just enable SMT that is disabled in Gaming Mode - we actually then get a Ryzen 1800X CPU that overclocks well but with possibly higher performance due to all system task running on different module (if we configure system that way) and unencumbered access to more PCIEx lines.
  • peevee - Friday, August 18, 2017 - link

    Yes, that would be interesting.
    c:\>start /REALTIME /NODE 0 /AFFINITY 5555 you_game_here.exe
  • mat9v - Friday, August 18, 2017 - link

    I think I would start it on node 1 is anything since system task would be at default running on node 0.
    Mask 5555? Wouldn't it be AAAA - for 8 cores (8 threads) and FFFF for 8 cores (16 threads)?
  • peevee - Friday, August 18, 2017 - link

    The mask 5555 assumes that SMT is enabled. Otherwise it should be FF.

    When SMT is enabled, 5555 and AAAA will allocate threads to the same cores, just different logical CPUs.
    Where system threads will be run is system dependent, nothing prevents Windows from running them on NODE 1. /NODE 0 allows to run whether or not you actually have multiple NUMA nodes.

    With /REALTIME Windows will have hard time allocating anything on those logical CPUs, but can use the same cores with other logical CPUs, so yes, technically it will affect results. But unless you load it with something, the difference should not be significant - things like cache and memory bus contention are more important anyway and don't care on which cores you run.

Log in

Don't have an account? Sign up now