Analyzing Creator Mode and Game Mode

In this review, we posted every graph with both the Creator Mode results (as default) and the Game Mode results (as 1950X-GM) for the Threadripper 1950X. There were a number of trends worth pointing out.

The first big answer is that in (almost) every multi threaded benchmark that relied on all the threads pushing out data, Game Mode scored considerably less than Creator Mode. In our test suite, I earmarked 19 different tests that are designed to scale with thread count, and the results ranged from +1% (Octane) down to -48% (Corona) and -45% (LuxMark). To summarize, anything that wanted serious throughput, Game Mode was not the right mode to be in. But anyone could have told you that.

The next element is the single threaded tests in the suite. There are 10 of these if we include the four legacy benchmarks, and for the most part these are all within 5% of the Creator Mode results – some are above and some are below, but nothing majorly drastic. Two of the benchmarks, however, did get significant jumps from using Game Mode: Dolphin (+9%) and Agisoft Stage 3 (+38%). Agisoft is probably a hollow victory as overall that test only gains by 1%.

We do run a few variable threaded loads, and the results here really depend on how much of a parallel task it is. As stated before, Agisoft goes up 1%, and perhaps surprisingly our Compile benchmark goes down 14%. One would have thought that the faster memory latency of Game Mode might counteract the lack of threads, especially when the L3 victim cache is of little use, but overall it would seem that our compile test likes the threads instead. WinRAR is a known memory-loving test, so Game Mode picked up a 3% win, and the web benchmarks that are variable threaded such as WebXPRT also picked up a 9% win. 

CPU Gaming Tests

Now we turn to our gaming tests. Because we test six different games with four different GPUs at two different resolutions, and in each case take averages and 99th percentiles, I’m going to present this data in a set of different ways. First, the overall gains based on the resolution:

Game Mode Gains Over Creative Mode
  1080p 4K
Average +0.6% +0.6%
99th +14.3% +8.0%

The two elements we can draw here are that Game Mode is beneficial mostly for 99th percentiles, but also it affects 1080p gaming over 4K gaming more.

This next table breaks it down by graphics card:

Game Mode Gains Over Creative Mode
NVIDIA GTX 1080 1080p 4K
Average -3.1% 0.0%
99th +1.6% +1.9%
NVIDIA GTX 1060 1080p 4K
Average -0.6% +0.1%
99th +3.1% +1.9%
AMD R9 Fury 1080p 4K
Average +2.5% +1.5%
99th +26.2% +14.4%
AMD RX 480 1080p 4K
Average +3.6% +0.6%
99th +25.0% +14.1%

Again, the data shows that 99th percentiles fare better over averages, although the AMD cards get a better uplift than the NVIDIA cards.

Now let us break it down by game tests.

Game Mode Gains Over Creative Mode
Civilization 6 1080p 4K
Average -2.1% -1.8%
99th -5.3% -3.1%
Ashes of the Singularity 1080p 4K
Average -3.2% -0.1%
99th -2.2% -0.6%
Shadow of Mordor 1080p 4K
Average -0.3% 0.0%
99th -4.5% +0.1%

Both Civilization 6 and Ashes of The Singularity slight decreases running in Game Mode, with 4K Civilization even regresses 5% in 99th percentile data. Shadow of Mordor has some gains at 4K, mainly with 99th percentile data, but well within the margin of error.

Game Mode Gains Over Creative Mode
RoTR-1 1080p 4K
Average -1.3% +0.1%
99th +4.2% +0.4%
RoTR-2 1080p 4K
Average +2.4% +1.8%
99th +43.7% +21.9%
RoTR-3 1080p 4K
Average +2.3% +1.4%
99th +17.9% +11.7%

Rise of the Tomb Raider has three test stages, and almost all of them benefit from Game Mode. Again, 99th percentiles go up (+43.7% for the Prophets Tomb test), and 1080p gets the better deal over 4K data.

Game Mode Gains Over Creative Mode
Rocket League 1080p 4K
Average +0.8% +1.0%
99th +9.1% +2.9%
Grand Theft Auto V 1080p 4K
Average +6.9% +2.2%
99th +49.2% +29.4%

The last two games are Rocket League and Grand Theft Auto, with Rocket League getting a small bump in 99th percentiles but GTA jumps up double digits. For GTA, those big number spikes at 1080p come from ~100% gains on AMD cards. Similarly at 4K, while NVIDIA cards get nearly no benefit, AMD cards gain 50-73%.

Conclusions on CPU Gaming

Looking at the overall data, the worst loss was a -10% at 4K for Civilization 6, and it's almost a complete mix of positive and negative results across the 256 data points we tested. The takeaway is that on average Game Mode affects certain games really, really well, like RoTR and GTA, but not games like Ashes or Shadow of Mordor. On average that equates to a +8% boost in 99th percentile frame rates at 4K or a +14% boost in 99th  percentile frame rates at 1080p, and mostly limited to AMD cards.

If a user wants to use Threadripper to play certain games when using an AMD card, they should be in Game Mode. There are some losses in some titles, but as a catch all situation, the gains for games where it does work are noticable, espeically at lower resolutions.

How Does it Compare to How We Tested on 16C/16T

Interestingly, the results for almost all benchmarks were lower in 8C/16T mode over 16C/16T mode. Despite moving down to a single die worth of cores, it would appear that having the raw cores at the disposal counteracts most of the cross communication losses, especially if each die of cores preferentially communicates with its own DRAM channels where possible.

In the following table,
On the left is AMD's Game Mode vs Creative Mode.
On the right is SMT disabled vs Creative Mode.
Both non-Creative data sets have NUMA enabled.

For example, at 16C/16T we saw a +4% average FPS improvement at 1080p, but now at 8C/16T this is only 0.6%. Before we had a +26.5% gain in 99th percentile numbers at 1080p, but now this is only +14.3%. The individual game numbers are matched similarly - on the right at 1080p at 16C/16T, we get an ~0.1% difference in the results for Game Mode compared to Creator mode, but on the left at 8C/16T we see an average loss of 3% for some of the tests. In the pure CPU benchmarks, at 16C/16T some benchmarks like Dolphin had a +33% increase, but at 8C/16T it is only a +9% increase.

The only upside to running at 8C/16T over 16C/16T would seem to be power consumption. In 8C/16T Game Mode, we saw an all-thread power consumption of 125W. In the non-SMT mode, this was 170W, closer to the default Creative Mode of 177W. One of AMD's reasons for implementing Game Mode like this was due to certain games not accepting the number of threads on offer - in the situations above, both of the new modes tested have 16 threads, at which point disabling SMT would appear to be preferable for performance. 

CPU Gaming Performance: Grand Theft Auto (1080p, 4K) Conclusions on Game Mode
POST A COMMENT

104 Comments

View All Comments

  • MrSpadge - Thursday, August 17, 2017 - link

    It's definitely good that reviewers test the game mode and the others, so that we know what to expect from them. If they only tested creator mode the internets would be full of people shouting foul play to bash AMD. Reply
  • deathBOB - Thursday, August 17, 2017 - link

    Ian - why not just enable NUMA and leave SMT on? Reply
  • Ian Cutress - Thursday, August 17, 2017 - link

    The fourth corner of testing :) Reply
  • lelitu - Thursday, August 17, 2017 - link

    Looking at setting up something for a home VM host, and linux development workstation makes NUMA with SMT the most useful set of benchmarks for my usecase.

    I'm particularly interested in TR, because it's brought the price of entry low enough that I can actually consider building such a system.
    Reply
  • Ratman6161 - Friday, August 18, 2017 - link

    ThreadRipper is big bucks for your purposes if I'm reading this correctly. For a home lab sort of environment a lot of cores helps as does a lot of RAM, but you don't necessarily need a boatload of CPU power. For example, in my home ESXi system I've got an FX8350 which VMWare sees as an 8 Core CPU. I've also given it 32 GB of DDR3 RAM (purchased when that was cheap). The 990FX motherboards work great for this since they have plenty of PCIe lanes available. In my case, those are used for an ancient ATI video card I happened to have in a drawer, an LSI x8 RAID card and an x4 Intel dual port gigabit NIC. The RAID card has 4 1 TB desktop drives hooked up to it in a RAID 5.

    All of the above can be had pretty cheap these days. I'm thinking of upgrading my storage to 4x2 TB SAS drives - available for $35 each on Amazon...brand new (but old models). The system is running 6 to 7 VM's (Windows Servers mostly) at any given time. But with only two users, I don't run into many cases where more than two VM's are actually doing anything at the same time. Example: Web server and SQL Server serving up a web app.

    For this environment, having a storage setup where the VM's are not contending for the disks and also having plenty of RAM seems to make a lot more difference than the CPU.

    Of course if you have the bucks and just want to, ThreadRipper would be terrific for this - just way to expensive and overkill for me.
    Reply
  • lelitu - Monday, August 21, 2017 - link

    That depends a lot on what you want the VMs for. Unfortunately for the sort of performance testing and development I do a VM toaster isn't actually good enough. Each VM needs at least 4 uncontended cores, and 10GB uncontended RAM. Two VMs is the absolute minimum, 3 would be better.

    That's not going to fit into anything less than a ryzen 7 minimum, and a Threadripper, *if* it performs as I expect in SMT + NUMA mode would be almost perfect. Unfortunately, you're right, it's a *lot* of coin to drop on something I don't know will actually do what I need well enough.

    Thus, I wish there were SMT+NUMA workstation and VM benchmarks here.
    Reply
  • JasonMZW20 - Thursday, August 17, 2017 - link

    Seems like Game Mode should have bumped up the base clocks to 1800X levels, especially for Nvidia cards using a software scheduler that seems to scale with CPU frequency. AMD's hardware scheduler is apparent in overall FPS stability and being mostly CPU agnostic.

    Matching base clocks with 1800X or even 1900X (3.8GHz) might be better on TR for gaming in Game Mode.
    Reply
  • lordken - Friday, August 18, 2017 - link

    Also for some weird reason that 1800X is much faster with higher fps in civilization and tomb rider? Reply
  • peevee - Thursday, August 17, 2017 - link

    "because the 1920X has fewer cores per CCX, it actually falls behind the 1950X in Game Mode and the 1800X despite having more cores. "

    Sorry, but when 12 cores with twice memory bandwidth are compiling slower than 8, you are doing something wrong. Yes, Anandtech, you. I'd seriously investigate. For example, the maximum number of threads were set at 24 or something.
    Reply
  • Ian Cutress - Thursday, August 17, 2017 - link

    When you have a bank of cores that communicate with each other, and replace it with more cores but uneven communication latencies, it is a difference and it can affect code paths. Reply

Log in

Don't have an account? Sign up now