CPU System Tests

Our first set of tests is our general system tests. These set of tests are meant to emulate more about what people usually do on a system, like opening large files or processing small stacks of data. This is a bit different to our office testing, which uses more industry standard benchmarks, and a few of the benchmarks here are relatively new and different.

All of our benchmark results can also be found in our benchmark engine, Bench.

PDF Opening

First up is a self-penned test using a monstrous PDF we once received in advance of attending an event. While the PDF was only a single page, it had so many high-quality layers embedded it was taking north of 15 seconds to open and to gain control on the mid-range notebook I was using at the time. This put it as a great candidate for our 'let's open an obnoxious PDF' test. Here we use Adobe Reader DC, and disable all the update functionality within. The benchmark sets the screen to 1080p, opens the PDF to in fit-to-screen mode, and measures the time from sending the command to open the PDF until it is fully displayed and the user can take control of the software again. The test is repeated ten times, and the average time taken. Results are in milliseconds.

System: PDF Opening with Adobe Reader DC

There's not much between the Threadripper CPUs here, but frequency wins the day.

FCAT Processing: link

One of the more interesting workloads that has crossed our desks in recent quarters is FCAT - the tool we use to measure and visually analyze stuttering in gaming due to dropped or runt frames. The FCAT process requires enabling a color-based overlay onto a game, recording the gameplay, and then parsing the video file through the analysis software. The software is mostly single-threaded, however because the video is basically in a raw format, the file size is large and requires moving a lot of data around. For our test, we take a 90-second clip of the Rise of the Tomb Raider benchmark running on a GTX 980 Ti at 1440p, which comes in around 21 GB, and measure the time it takes to process through the visual analysis tool.

System: FCAT Processing ROTR 1440p GTX980Ti Data

Similar to PDF opening, single threaded performance wins out.

Dolphin Benchmark: link

Many emulators are often bound by single thread CPU performance, and general reports tended to suggest that Haswell provided a significant boost to emulator performance. This benchmark runs a Wii program that ray traces a complex 3D scene inside the Dolphin Wii emulator. Performance on this benchmark is a good proxy of the speed of Dolphin CPU emulation, which is an intensive single core task using most aspects of a CPU. Results are given in minutes, where the Wii itself scores 17.53 minutes.

System: Dolphin 5.0 Render Test

Dolphin likes single thread performance as well, although interpreting this graph is giving me somewhat of a headache. Game Mode seems to give a small improvement here.

3D Movement Algorithm Test v2.1: link

This is the latest version of the self-penned 3DPM benchmark. The goal of 3DPM is to simulate semi-optimized scientific algorithms taken directly from my doctorate thesis. Version 2.1 improves over 2.0 by passing the main particle structs by reference rather than by value, and decreasing the amount of double->float->double recasts the compiler was adding in. It affords a ~25% speed-up over v2.0, which means new data.

System: 3D Particle Movement v2.1

Our first pure multithreaded test, and the 1950X wins with 32 threads. The 1920X beats the 1950X in Game mode, due to 24 threads beating 16 cores. The 1800X edges out the 1950X-GM due to frequency.

DigiCortex v1.20: link

Despite being a couple of years old, the DigiCortex software is a pet project for the visualization of neuron and synapse activity in the brain. The software comes with a variety of benchmark modes, and we take the small benchmark which runs a 32k neuron/1.8B synapse simulation. The results on the output are given as a fraction of whether the system can simulate in real-time, so anything above a value of one is suitable for real-time work. The benchmark offers a 'no firing synapse' mode, which in essence detects DRAM and bus speed, however we take the firing mode which adds CPU work with every firing.

Unfortunately we had issues with the 1920X posting a result.

System: DigiCortex 1.20 (32k Neuron, 1.8B Synapse)

DigiCortex requires a mash of CPU frequency and DRAM performance to get a good result, although the 1950X in any mode regresses the result, even in Game Mode, suggesting it is more sensitive to overall DRAM latency.

Agisoft Photoscan 1.0: link

Photoscan stays in our benchmark suite from the previous version, however now we are running on Windows 10 so features such as Speed Shift on the latest processors come into play. The concept of Photoscan is translating many 2D images into a 3D model - so the more detailed the images, and the more you have, the better the model. The algorithm has four stages, some single threaded and some multi-threaded, along with some cache/memory dependency in there as well. For some of the more variable threaded workload, features such as Speed Shift and XFR will be able to take advantage of CPU stalls or downtime, giving sizeable speedups on newer microarchitectures.

System: Agisoft Photoscan 1.0 Total Time

The variable threaded nature of Agisoft shows that in our workflow, it's a mix of cores, IPC and frequency required to win. The quad-channel memory and lower crosstalk of the 1950X in Game Mode seems to get a marginal improvement over the 1950X.

The 2017 Benchmark Suite Benchmarking Performance: CPU Rendering Tests
Comments Locked

104 Comments

View All Comments

  • peevee - Friday, August 18, 2017 - link

    Of course. Work CPUs must be tested at work. Kiddies are fine with i3s.
  • Ian Cutress - Sunday, August 20, 2017 - link

    https://myhacker.net hacking news hacking tutorials hacking ebooks
  • IGTrading - Thursday, August 17, 2017 - link

    It would be nice and very useful to post some power consumption results at the platform level, if we're doing "extra" additional testing.

    It is very important since we're paying for the motherboard just as much as we pay for a Ryzen 5 or even Ryzen 7 processor.

    And it will correctly compare the TCO of the X399 platform with the TCO of X299.
  • jordanclock - Thursday, August 17, 2017 - link

    So it looks like AMD should have gone with just disabling SMT for Game Mode. There are way more benefits and it is easier to understand the implications. I haven't seen similar comparisons for Intel in a while, perhaps that can be exploration for Skylake-X as well?
  • HStewart - Thursday, August 17, 2017 - link

    I would think disable SMT would be better, but the reason maybe in designed of link between the two 8 Core dies on chip.
  • GruenSein - Thursday, August 17, 2017 - link

    I'd really love to see a frame time probability distribution (Frame time on x-axis, rate of occurrence on y-axis). Especially in cases with very unlikely frames below a 60Hz rate, the difference between TR and TR-GM/1800X seem most apparent. Without the distribution, we will never know if we are seeing the same distribution but slightly shifted towards lower frame rates as the slopes of the distribution might be steep. However, those frames with frame times above a 60Hz rate might be real stutters down to a 30Hz rate but they might just as well be frames at a 59,7Hz rate. I realize why this threshold was selected but every threshold is quite arbitrary.
  • MrSpadge - Thursday, August 17, 2017 - link

    Does AMD comment on the update? What's their reason for choosing 8C/16T over 16C/16T?

    > One could postulate that Windows could do something similar with the equivalent of hyperthreads.

    They're actually already doing that. Loading 50% of all threads on an SMT machine will result in ~50% average load on every logical core, i.e. all physical cores are only working on 1 thread at a time.

    I know mathematically other schedulings are possible, leading to the same result - but by now I think it's common knowledge that the default Win scheduler works like that. Hence most lightly threaded software is indifferent to SMT. Except games.
  • NetMage - Sunday, August 20, 2017 - link

    Then why did SMT mode show differences from Creator mode in the original review?
  • Dribble - Thursday, August 17, 2017 - link

    No one is ever going to run game mode - why buy a really expensive chip and then disable half of it, especially as you have to reboot to do it? It's only use is to make threadripper look slightly better in reviews. Imo it would be more honest as a reviewer to just run it in creator mode all the time.
  • jordanclock - Thursday, August 17, 2017 - link

    The point is compatibility, as mentioned in the article multiple times. AMD is offering this as an option for applications (mainly games) that do not run correctly, if at all, on >16 core CPUs.

Log in

Don't have an account? Sign up now