CPU Rendering Tests

Rendering tests are a long-time favorite of reviewers and benchmarkers, as the code used by rendering packages is usually highly optimized to squeeze every little bit of performance out. Sometimes rendering programs end up being heavily memory dependent as well - when you have that many threads flying about with a ton of data, having low latency memory can be key to everything. Here we take a few of the usual rendering packages under Windows 10, as well as a few new interesting benchmarks.

All of our benchmark results can also be found in our benchmark engine, Bench.

Corona 1.3: link

Corona is a standalone package designed to assist software like 3ds Max and Maya with photorealism via ray tracing. It's simple - shoot rays, get pixels. OK, it's more complicated than that, but the benchmark renders a fixed scene six times and offers results in terms of time and rays per second. The official benchmark tables list user submitted results in terms of time, however I feel rays per second is a better metric (in general, scores where higher is better seem to be easier to explain anyway). Corona likes to pile on the threads, so the results end up being very staggered based on thread count.

Rendering: Corona Photorealism

Corona loves threads. Game Mode goes behind the 1800X due to frequency.

Blender 2.78: link

For a render that has been around for what seems like ages, Blender is still a highly popular tool. We managed to wrap up a standard workload into the February 5 nightly build of Blender and measure the time it takes to render the first frame of the scene. Being one of the bigger open source tools out there, it means both AMD and Intel work actively to help improve the codebase, for better or for worse on their own/each other's microarchitecture.

Rendering: Blender 2.78

Blender loves threads.

LuxMark v3.1: Link

As a synthetic, LuxMark might come across as somewhat arbitrary as a renderer, given that it's mainly used to test GPUs, but it does offer both an OpenCL and a standard C++ mode. In this instance, aside from seeing the comparison in each coding mode for cores and IPC, we also get to see the difference in performance moving from a C++ based code-stack to an OpenCL one with a CPU as the main host.

Rendering: LuxMark CPU C++Rendering: LuxMark CPU OpenCL

Like Blender, LuxMark is all about the thread count. Ray tracing is very nearly a textbook case for easy multi-threaded scaling, although a couple of things pop up in the OpenCL version. Aside from the scores being lower, the jump from 1920X to 1950X isn't that great, and the quad-channel DRAM of the 1950X in Game Mode puts it over the 1800X.

POV-Ray 3.7.1b4: link

Another regular benchmark in most suites, POV-Ray is another ray-tracer but has been around for many years. It just so happens that during the run up to AMD's Ryzen launch, the code base started to get active again with developers making changes to the code and pushing out updates. Our version and benchmarking started just before that was happening, but given time we will see where the POV-Ray code ends up and adjust in due course.

Rendering: POV-Ray 3.7

POV-Ray loves threads.

Cinebench R15: link

The latest version of CineBench has also become one of those 'used everywhere' benchmarks, particularly as an indicator of single thread performance. High IPC and high frequency gives performance in ST, whereas having good scaling and many cores is where the MT test wins out.

Rendering: CineBench 15 MultiThreadedRendering: CineBench 15 SingleThreaded

Multithreaded results are as expected, and single thread seems to benefit a bit from more DRAM channels, although 200 MHz is enough to put the 1800X over the 1950X in Game Mode.

Benchmarking Performance: CPU System Tests Benchmarking Performance: CPU Web Tests
Comments Locked

104 Comments

View All Comments

  • WoWFishmonger - Thursday, August 17, 2017 - link

    I thought it was "The proof is in the PUDDING"
    All this time I've been eating pudding, looking for proof..... explains why I haven't found any yet. :|

    Nice write up, its good to see that even if people won't use this new mode, they do have the choice to enable it.

    Nothing wrong with choice IMO.
  • Ian Cutress - Thursday, August 17, 2017 - link

    Heh, wow. That's a bad typo. Fixed, thanks :)
  • edzieba - Thursday, August 17, 2017 - link

    "I thought it was "The proof is in the PUDDING""

    The phrase is: "the proof of the pudding is in the eating".
  • boozed - Thursday, August 17, 2017 - link

    This
  • Alexvrb - Saturday, August 19, 2017 - link

    I've always heard "the proof is in the pudding". The shorter version's meaning is still pretty apparent. Plus it rolls off the tongue better, so to speak. Mmmm..... pudding.
  • sprockincat - Thursday, August 17, 2017 - link

    While we're on the topic, I think it's "Game Mode as originally envisioned by AMD."
  • NikosD - Thursday, August 17, 2017 - link

    So, you read my comment regarding your mistake at the first TR review of assuming a 16C/16T CPU after enabling Game Mode instead of a 8C/16T and you corrected that in your new review.

    Now, you only have to repeat your tests with DDR4-3200 and select a different, more "workstation" kind of benchmarks in order to test monsters of 32 threads and not PDF opening of course !

    Mercy !
  • Aisalem - Thursday, August 17, 2017 - link

    For the average person reading most of tech sites the more workstation benchmarks doesn't really makes sense.

    What I would like to see if you can enable game mode and disable SMT. That will leave 1950X with 8 cores available to the system which still should be enough for gaming but might present even better results.
  • Zstream - Thursday, August 17, 2017 - link

    For the love of all things... no one buys TR to just play games, or open .PDF's.
  • Gothmoth - Thursday, August 17, 2017 - link

    well noobs do.

    but i think websites like anandtech should know better.. but well anand is gone and.
    the new generation is obviously no adequat replacement.

Log in

Don't have an account? Sign up now