Shadow of Mordor

The next title in our testing is a battle of system performance with the open world action-adventure title, Middle Earth: Shadow of Mordor (SoM for short). Produced by Monolith and using the LithTech Jupiter EX engine and numerous detail add-ons, SoM goes for detail and complexity. The main story itself was written by the same writer as Red Dead Redemption, and it received Zero Punctuation’s Game of The Year in 2014.

A 2014 game is fairly old to be testing now, however SoM has a stable code and player base, and can still stress a PC down to the ones and zeroes. At the time, SoM was unique, offering a dynamic screen resolution setting allowing users to render at high resolutions that are then scaled down to the monitor. This form of natural oversampling was designed to let the user experience a truer vision of what the developers wanted, assuming you had the graphics hardware to power it but had a sub-4K monitor.

The title has an in-game benchmark, for which we run with an automated script implement the graphics settings, select the benchmark, and parse the frame-time output which is dumped on the drive. The graphics settings include standard options such as Graphical Quality, Lighting, Mesh, Motion Blur, Shadow Quality, Textures, Vegetation Range, Depth of Field, Transparency and Tessellation. There are standard presets as well.

We run the benchmark at 1080p and a native 4K, using our 4K monitors, at the Ultra preset. Results are averaged across four runs and we report the average frame rate, 99th percentile frame rate, and time under analysis. 

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6GB Performance


1080p

4K

Sapphire R9 Fury 4GB Performance


1080p

4K

Sapphire RX 480 8GB Performance


1080p

4K

Gaming Performance: Ashes of the Singularity Escalation (1080p, 4K) Gaming Performance: Rise of the Tomb Raider (1080p, 4K)
Comments Locked

140 Comments

View All Comments

  • ampmam - Thursday, July 27, 2017 - link

    Great review but biased conclusion.
  • tvdang7 - Thursday, July 27, 2017 - link

    No overclock?
  • Oxford Guy - Thursday, July 27, 2017 - link

    No, just a RAM underclock.
  • zodiacfml - Thursday, July 27, 2017 - link

    overclocking tests on the ryzen 3 1200 please. the only weakness of the chip is for non-gaming or htpc usage as it will require purchasing a discrete graphics card. otherwise, it presents good value for most things like gaming and multi-threaded applications, add overclocking, and it gets even better.
  • kaesden - Thursday, July 27, 2017 - link

    one thing to not overlook with the ryzen 1300x is the platform. Its competitive with budget intel offerings and can take a drop in 8 core 16 thread upgrade with no other changes except maybe a better cooling solution, Something intel can't match. Intel has the same "strategy" at their high end with the new X299 platform, but they seem to have lost focus of the big picture. The HEDT platform is too expensive to fit this type of scenario. Anyone who's shelling out the cash for a HEDT system isn't the type of budget user who is going to go for the 7740x. they're just going to get a higher end cpu from the start if they can afford it at all, not to mention the confusion about what features work with what cpu's and what doesn't, etc...

    TLDR; AMD has a winner of a platform here that will only get better as time goes on.
  • peevee - Thursday, July 27, 2017 - link

    From the tests, looks like Razen 3 does not make much sense. Zen arch provides quite a boost from SMT in practically all applications where performance actually matters (which are all multithreaded for years now), and AMD artificially disabled this feature for that stupid Intel-like market segmentation.

    Also I am sure there are not that many CPUs where exactly 2 out of 4 cores on each CCX is broken. So in effect, in cases like one CCX has 4 good cores and another has only 2 they kill 2 good cores, kill half of L3, kill hyperthreading...

    It would be better to create a separate 1-CCX chip for the line, which would have much higher (more that twice per wafer) yield being half the size, and release 2, 3 and 4 core CPUs as Ryzen 2, 3 and 4 accordingly. With hyperthreading and everything. I am sure it does not cost "tens of millions of dollars" to create a new mask as even completely custom chips cost less, let alone that simple derivative.
  • Oxford Guy - Thursday, July 27, 2017 - link

    "It would be better to create a separate 1-CCX chip for the line"

    Or, it could be explained by this article why AMD can't release a Zen chip with 1 CCX enabled and one disabled. Instead, we just get "obviously".
  • silverblue - Friday, July 28, 2017 - link

    He did explain it. Page 1.
  • Oxford Guy - Saturday, July 29, 2017 - link

    Where?

    All I see is this: "Number 3 leads to a lop-sided silicon die, and obviously wasn’t chosen."

    That is not an explanation.
  • peevee - Tuesday, August 1, 2017 - link

    That is still be half the yield per wafer compared to a dedicated 1-CCX line. Twice the cost. Cost matters.
    And the 3rd chip must be 1CCX+1GPU. SMT must be on everywhere though, it is too good to artificially lower value of your product by disabling it by segmentation.

Log in

Don't have an account? Sign up now