Rise of the Tomb Raider

One of the newest games in the gaming benchmark suite is Rise of the Tomb Raider (RoTR), developed by Crystal Dynamics, and the sequel to the popular Tomb Raider which was loved for its automated benchmark mode. But don’t let that fool you: the benchmark mode in RoTR is very much different this time around.

Visually, the previous Tomb Raider pushed realism to the limits with features such as TressFX, and the new RoTR goes one stage further when it comes to graphics fidelity. This leads to an interesting set of requirements in hardware: some sections of the game are typically GPU limited, whereas others with a lot of long-range physics can be CPU limited, depending on how the driver can translate the DirectX 12 workload.

Where the old game had one benchmark scene, the new game has three different scenes with different requirements: Geothermal Valley (1-Valley), Prophet’s Tomb (2-Prophet) and Spine of the Mountain (3-Mountain) - and we test all three. These are three scenes designed to be taken from the game, but it has been noted that scenes like 2-Prophet shown in the benchmark can be the most CPU limited elements of that entire level, and the scene shown is only a small portion of that level. Because of this, we report the results for each scene on each graphics card separately.

 

Graphics options for RoTR are similar to other games in this type, offering some presets or allowing the user to configure texture quality, anisotropic filter levels, shadow quality, soft shadows, occlusion, depth of field, tessellation, reflections, foliage, bloom, and features like PureHair which updates on TressFX in the previous game.

Again, we test at 1920x1080 and 4K using our native 4K displays. At 1080p we run the High preset, while at 4K we use the Medium preset which still takes a sizable hit in frame rate.

It is worth noting that RoTR is a little different to our other benchmarks in that it keeps its graphics settings in the registry rather than a standard ini file, and unlike the previous TR game the benchmark cannot be called from the command-line. Nonetheless we scripted around these issues to automate the benchmark four times and parse the results. From the frame time data, we report the averages, 99th percentiles, and our time under analysis.

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

#1 Geothermal Valley

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6GB Performance


1080p

4K

Sapphire R9 Fury 4GB Performance


1080p

4K

Sapphire RX 480 8GB Performance


1080p

4K

RoTR: Geothermal Valley Conclusions

If we were testing a single GTX 1080 at 1080p, you might think that the graph looks a little odd. All the quad-core, non HT processors (so, the Core i5s) get the best frame rates and percentiles on this specific test on this specific hardware by a good margin. The rest of the tests do not mirror that result though, with the results ping-ponging between Intel and AMD depending on the resolution and the graphics card.

#2 Prophet's Tomb 

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6GB Performance


1080p

4K

Sapphire R9 Fury 4GB Performance


1080p

4K

Sapphire RX 480 8GB Performance


1080p

4K

RoTR: Prophet's Tomb Conclusions

For Prophet's Tomb, we again see the Core i5s pull a win at 1080p using the GTX 1080, but the rest of the tests are a mix of results, some siding with AMD and others for Intel. There is the odd outlier in the Time Under analysis, which may warrant further inspection.

#3 Spine of the Mountain 

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6GB Performance


1080p

4K

Sapphire R9 Fury 4GB Performance


1080p

4K

Sapphire RX 480 8GB Performance


1080p

4K

RoTR: Spine of the Mountain Conclusions

Core i5, we're assigning you to run at 1080p with a GTX 1080. That's an order. The rest of you, stand easy.

Gaming Performance: Shadow of Mordor (1080p, 4K) Gaming Performance: Rocket League (1080p, 4K)
Comments Locked

176 Comments

View All Comments

  • Ian Cutress - Monday, July 24, 2017 - link

    In the way everyone has historically been reporting PCIe lanes, Ryzen only has 16 PCIe lanes intended for graphics, with the other four for the chipset and another four for storage as an SoC. We've repeated this over and over and over again. Same with Threadripper: 60, plus four for chipset. If we're going to start counting PCIe lanes for chipsets (and DMI equivalents) and SoC related PCIe lanes for storage and others, we'll have to go and rewrite the PCIe lane counts for the last several generations of Intel and AMD CPUs.
  • Kalelovil - Monday, July 24, 2017 - link

    If the category is PCIe lanes for graphics that is quite right.
    But by that token doesn't (non cut-down) Broadwell-E/Skylake-E only have 32 lanes intended for graphics, as the switching logic allows for 2x16 and 4x8 configurations.

    Although this is getting quite in-the-weeds. Overall I really appreciate the time and effort put into PC component reviews by the Anandtech staff.
  • FreckledTrout - Monday, July 24, 2017 - link

    I agree with Ian as 4 PCIe lanes are always taken since you are running Ryzen with a chipset with no real way around that. I also would agree with say Skylake-x reporting 4 less PCIe lanes for the DMI link.
  • Trenteth - Wednesday, July 26, 2017 - link

    except Ryzen has 16x GPU lanes, $x to the chipset and 4x diect to an NVMe or U.2 drive. it's 20 PCIe 3.0 lanes off the CPU usable.
  • Notmyusualid - Tuesday, July 25, 2017 - link

    I got 40 lanes on my E5-2690.

    I'm running 4x 1070s on that, and PCIe based storage, and I doubled my throughput by moving the SSD to a riser card (until the 4th GPU went in), which means its back on the m/b.

    Though, you can't notice in everyday use. Oddly.
  • Trenteth - Wednesday, July 26, 2017 - link

    Having the 4x PCIe 3.0 lanes for a NVMe drive is an advantage, it's connected directly to the CPU and bypasses the chipset link which allows more bandwidth for USB/PCIe 2.0 lanes and SATA. I don't agree with you on not counting them.
  • Kalelovil - Monday, July 24, 2017 - link

    Your charts seem to label the i7 7740X with a $329 MSRP.
    In contrast your first page (and Intel ARK) lists a $339-$350 MSRP.

    I assume the former is a mistake?
  • Ian Cutress - Monday, July 24, 2017 - link

    $339 is the 1k tray price - the one that Intel quotes in the price lists and applicable if you buy 1000 OEM CPUs. $350 is MSRP that retailers will apply from their stock from distributors. Add more if you want a cooler. The issue here is that sometimes Intel never quotes an MSRP for some OEM-only processors, and AMD never seem to quote tray/OEM prices for retail parts. I'll edit this and make it clearer.
  • Kalelovil - Monday, July 24, 2017 - link

    Oh, by former I was referring to the $329 in your charts not the $339 on ARK
  • Ian Cutress - Monday, July 24, 2017 - link

    Oops, I misread the price and misread your comment. Graphs should be updated with a cache refresh.

Log in

Don't have an account? Sign up now