Intel’s direction for the high-end desktop space has taken an interesting turn. After several years of iterative updates, slowly increasing core counts and increasing IPC, we have gotten used to being at least one generation of microarchitecture behind the mainstream consumer processor families. There are many reasons for this, including enterprise requirements for long support platforms as well as enterprise update cycles. For 2017, Intel is steering the ship in a slightly different direction, and launching the latest microarchitecture on the HEDT platform. These CPUs don’t feature the high core counts of the other HEDT parts, but offer a higher point up the voltage/frequency scale to be the fastest single thread processors money can buy. They also overclock quite well.

The High-Level Product

Back at Computex, Intel announced its new high-end desktop (HEDT) platform code named Basin Falls. There are three elements to Basin Falls: the new X299 chipset which brings a number of enhancements from the more mainstream consumer line, a set of Skylake-X processors based on the Skylake-SP microarchitecture (and slightly different from the mainstream Skylake-S processors launched in 2015) from 6 cores to 18 cores, and a pair of Kaby Lake-X processors, reusing the Kaby Lake-S silicon launched earlier this year but with a bit more frequency and power consumption.

We covered all three parts in our launch pieces (linked below), but here is a quick recap.

Pushing Peak Performance

The main reasons an enthusiast invests in the HEDT platform usually revolve around multi-threaded performance, the need to support multiple graphics cards, and potentially 1.21 jiggabytes of DRAM (ed: you mean 128GB). Kaby Lake-X (KBL-X for short) doesn’t have any of these features that we normally prescribe to HEDT: it only has four cores, not ten or higher; it only supports one GPU at full PCIe speed, up to two in SLI or three in Crossfire if you are willing to have a lower link speed; and it only has dual channel memory for a maximum of 64GB. So why is Intel bringing KBL-X to HEDT? The answer lies primarily in peak performance.

Users that have been in the enthusiast space will have realized that the Holy Grail for PC performance is single threaded (ST) performance. If you master single thread throughput, then arguably the rest is easier, such as scaling out to more cores. There are usually three barriers to high ST-perf: instructions per clock (IPC), frequency and power consumption. A high IPC is fundamental to such a design, as any gains will propagate through the platform, but is becoming a tough job. Over the last few generations, Intel has increased IPC by 3-10% each generation, making a 30-45% increase since 2010 and Sandy Bridge depending on the benchmark, but we’re unlikely to see 50-100% jumps per generation any time soon. Any IPC gains are multiplied through the frequency at which the processor runs at, which can be limited by a combination of things: production process (e.g 14nm), voltage characteristics, stability, yield etc. These features tie directly into power consumption, which increases as a square of voltage and with frequency/capacitance. With some designs, +10% frequency might be possible, but at the cost of +100% power, so there also needs to be a balance to have something marketable that people will want to buy.

Kaby Lake-X is binding Intel’s latest x86 microarchitecture with the highest IPC, at the highest frequency they have ever launched a consumer CPU, for a reasonable power window. Users can overclock another 10% fairly easily, for a slight increase in power. Simply put, Kaby Lake-X is the highest single-thread performing x86 processor out-of-the-box that exists. This is a different take on HEDT compared to previous generations of HEDT CPUs.

With the extra single thread performance, it would appear to appeal to traders who need fast systems, gamers where single thread performance is limiting the frame rate (or minimum frame rates), or science/enterprise workloads where serial code is a limiting factor for simulations or professional applications.

The Core i7 and the Core i5

At the heart, the new KBL-X processors are no different to their mainstream platform KBL-S brethren. The silicon is the same, but potentially binned for a better voltage/frequency curve, and then packaged into the HEDT platform rather than the mainstream platform. Unlike the mainstream processor stack though, Intel is only launching two processors. A Core i7-7740X and a Core i5-7640X.

Intel Kaby Lake Processors
  Core i7 Core i5
Core i7-7740X Core i7-7700K Core i5-7640X Core i5-7600K
Socket LGA2066 LGA1151 LGA2066 LGA1151
Cores/Threads 4/8 4/8 4/4 4/4
Base Frequency 4.3 GHz 4.2 GHz 4.0 GHz 3.8 GHz
Turbo Frequency 4.5 GHz 4.5 GHz 4.2 GHz 4.2 GHz
TDP 112 W 91 W 112 W 91 W
L2 Cache 256 KB/core
L3 Cache 8 MB 6 MB
DRAM Channels 2
DRAM Support DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2400
Graphics None HD 620 None HD 620
Price (MSRP) $350 $250
Price (7/21) $349 $309 $248 $239
Launched July 2017 Jan 2017 July 2017 Jan 2017

Both CPUs are quad core, with the Core i7 having Hyperthreading for a total of eight threads. The Core i5 does not have hyperthreading, making it the first HEDT processor in the modern Core era to do so. Both will have identical support to their KBL-S siblings, although the increased base/turbo frequencies have resulted in Intel’s TDP increasing from 95W to 112W. The TDP rating is a guide for appropriate cooling: the KBL-S processors were actually very good on their power consumption at stock frequencies, and as shown later, so are the KBL-X processors. Intel could have kept the 95W TDP rating very easily here.

So given what was said in the previous section about peak performance, the Core i7 fits the bill. It has the highest frequencies, and supports hyperthreading for increased performance. It begs the question why the Core i5 exists at all. There are a few guesses as to why:

  • For some enterprise users, hyperthreading is not needed
  • It is a cheaper entry point into the platform
  • It overclocks just as well to perform the same as the Core i7

Intel’s official line is about giving customers options. We will not be seeing a Core i3 on HEDT any time soon, though.

Kaby Lake-X does not come with any bundled cooler, but Intel is promoting its own TS13X liquid cooled loop with the processors. This CLC has been in the market for a good number of years now.

Competition and Market

Because these new KBL-X parts are updates to the KBL-S family, Intel has direct competition with itself. The Core i7-7740X is an alternative to the Core i7-7700K on the mainstream platform, being similar in frequency but giving much higher platform costs.

Comparison: Intel Core i7-7740X vs Core i7-7700K
Intel
Core i7-7740X
Features Intel
Core i7-7700K
X299 Platform Z270 etc
LGA2066 Socket LGA1151
4 / 8 Cores/Threads 4 / 8
4.3 / 4.5 GHz Base/Turbo 4.2 / 4.5 GHz
16 PCIe 3.0 Lanes 16
256 KB/core L2 Cache 256 KB/core
8 MB L3 Cache 8 MB
112W TDP 95W
$349 Retail Price (7/21) $309
MSI X299 Raider: $230
ASUS Prime X299-A: $310
GIGABYTE X299-UD4: $249
Cheap OC
Motherboard
Cost
GIGABYTE Z270-HD3: $114
MSI Z270 SLI PLUS: $136
ASUS TUF Z270-MK2: $120

Similar platform builds for the two put an extra $100-150 cost on the motherboard, potentially limiting the usefulness of the new KBL-X parts on paper, as that extra cost of the build as a whole might not warrant another 100 MHz on the turbo frequency. The proof is in the pudding, which is why we are doing this review. The Core i5-7640X against the Core i5-7600K is in a similar situation.

However, there is also AMD to discuss. With the launch of the Ryzen family of processors, There are now significant comparisons to be made between what Intel offers and what AMD offers. Going at a price-for-price comparison, using MSRP prices (not sale prices or distributor prices), the Core i7-7740X squares against AMD’s Ryzen 7 1700.

Comparison: Intel Core i7-7740X vs AMD Ryzen 7 1700
Intel 
Core i7-7740X
Features AMD
Ryzen 7 1700
X299 Platform X370, B350, A320
LGA2066 Socket AM4
4 / 8 Cores/Threads 8 / 16
4.3 / 4.5 GHz Base/Turbo 3.0 / 3.7 GHz
16 PCIe 3.0 Lanes 16
256 KB/core L2 Cache 512 KB/core
8 MB L3 Cache 16 MB (Victim Cache)
112W TDP 65W
$349 Retail Price (7/21) $270
MSI X299 Raider: $230
ASUS Prime X299-A: $310
GIGABYTE X299-UD4: $249
Cheap OC
Motherboard
Cost
ASUS Prime B350-Plus: $90
MSI B350 Tomahawk: $100
ASRock AB350 Pro4: $100

At this price, both sides have their merits. Intel wins in IPC, which is about 5-15% ahead clock-for-clock, but is also at a higher frequency compounding the difference. In its own attack, AMD wins in cores and threads, offering eight cores and sixteen threads where Intel only offers four cores and eight threads. Intel wins for the IO and chipset, offering 24 PCIe 3.0 lanes for USB 3.1/SATA/Ethernet/storage, while AMD is limited on that front, having 8 PCIe 2.0 from the chipset. Depending on the workload, both sides have merits – AMD will state that it is geared towards more professional multi-threaded workloads, while Intel is geared towards serial code scenarios which still dominate certain tasks. There’s also the platform cost, where the motherboards are $150-$200 cheaper for AMD when looking at cheap overclockable systems.

For the Core i5-7640X, it sits at a similar price to AMD’s Ryzen 5 1600X.

Comparison: Intel Core i5-7640X vs AMD Ryzen 5 1600X
Intel 
Core i5-7640X
Features AMD
Ryzen 5 1600X
X299 Platform X370, B350, A320
LGA2066 Socket AM4
4 / 4 Cores/Threads 6 / 12
4.2 / 4.4 GHz Base/Turbo 3.6 / 4.0 GHz
16 PCIe 3.0 Lanes 16
256 KB/core L2 Cache 512 KB/core
8 MB L3 Cache 16 MB (Victim Cache)
112W TDP 95W
$248 Retail Price (7/21) $230
MSI X299 Raider: $230
ASUS Prime X299-A: $310
GIGABYTE X299-UD4: $249
Cheap OC
Motherboard
Cost
ASUS Prime B350-Plus: $90
MSI B350 Tomahawk: $100
ASRock AB350 Pro4: $100

For this review, we have also included numbers for other processors. These include AMD’s Ryzen 7 1800X, which at $499 is an alternative due to the money saved by investing on the AM4 platform; we also have the Skylake-X based Core i7-7800X, which has an MSRP not so far away from the i7-7740X, and opens up the platform with more PCIe lanes, two more cores, but at the expense of single thread performance; and finally the perennial Core i7-2600K from the Sandy Bridge era, for the benchmarks which we have data.

Given everything said above, it would appear Intel has an uphill struggle to convince users that Kaby Lake-X is worth the investment. In this review we will test and see what the performance story is.

Please note that our AMD data is before AGESA 1.0.0.6. We are planning an article with an update of the latest AGESA soon.

Pages In This Review

Navigating the X299 Minefield: Kaby Lake-X Support
POST A COMMENT

177 Comments

View All Comments

  • Alistair - Monday, July 24, 2017 - link

    I look at it this way: in 2016 I bought a 6600k for $350 CAD. In 2017 I bought a Ryzen 1700 for $350 CAD. Overall speed increase 240%. So AMD delivered 240 percent more performance at the same price in one year. Intel continues to deliver less than 10 percent per dollar. I could care less if the single performance is the same.

    Call me next time Intel releases a chip a year later that is 240 percent faster for the same price.
    Reply
  • Hurr Durr - Monday, July 24, 2017 - link

    So you bought yourself inferior IPC and a sad attempt at ameliorating it by piling up cores, and now have to cope with this through wishful thinking of never materializing performance percents. Classic AMD victim behavior. Reply
  • Alistair - Monday, July 24, 2017 - link

    First of all, stop using IPC, an expression you don't understand. Use single core performance. In almost every single benchmark I see dramatic speed improvements. I'm comparing the i5 with a Ryzen 1700 as they were the same cost. People harping over the i7-7700k apparantly didn't notice the 1700 selling for as low as $279 USD.

    Also get higher fps in almost every single game (Mass Effect Andromeda, Civilization and Overwatch in particular).
    Reply
  • Alistair - Tuesday, July 25, 2017 - link

    I have tremendous respect for Ian, whose knowledge and integrity is of the highest order. I just think some of his words in this review lose the plot. As he said, "it would appear Intel has an uphill struggle to convince users that Kaby Lake-X is worth the investment". He should have emphasized that a little more.

    In Canada, Ryzen 1700 plus motherboard = $450. i5 (not i7) plus motherboard is $600. Yes, $150 dollars more!

    Intel has 20 percent faster single core performance and yet Ryzen is 2.4 times (+140 percent) faster overall... Numbers should speak for themselves if you don't lose the plot. I agree single threaded performance is very important when the divergence is large, such as Apple's A10 vs Snapdragon 835, or the old Bulldozer. But the single threaded gap has mostly closed and a yawning gulf has opened up in total price/performance. Story of the year!
    Reply
  • Hurr Durr - Tuesday, July 25, 2017 - link

    Extolling price slashing right after launch, boy you`re on a roll today. Reply
  • silverblue - Tuesday, July 25, 2017 - link

    I think you should prove why you think Intel is the superior buy, instead of just trolling and not actually providing any rationale behind your "arguments".

    On Amazon.co.uk right now, there are four Ryzen and one FX CPU in the top 10. Here's the list (some of the recommended retail price values are missing or a bit - in the case of the 8350 - misleading):

    1) i7-7700K £308.00; RRP £415.99
    2) R5 1600 £189.19; RRP £219.95
    3) R7 1700 £272.89; RRP £315.95
    4) i5-7600K £219.99; RRP £?
    5) i5-7500 £173.00; RRP £?
    6) FX-8350 £105.50; RRP £128.09
    7) i5-6500 £175.09; RRP £?
    8) R5 1500X £165.99; RRP £189.98
    9) Pentium G4400 £48.90; RRP £?
    10) R5 1600X £215.79; RRP £249.99

    There must be a ton of stupid people buying CPUs now then, or perhaps they just prefer solder as their thermal interface material of choice.

    Advantages for Intel right now: clock speed; overclocking headroom past 4 GHz; iGPU (not -X CPUs)
    Disadvantages for Intel right now: price; limited availability of G4560; feature segmentation (well, that's always been a factor); overall platform cost

    An AMD CPU would probably consume similar amounts of power if they could be pushed past 4.1GHz so I won't list that as a disadvantage for Intel, nor will I list Intel's generally inferior box coolers as not every AMD part comes with one to begin with.

    The performance gap in single threaded workloads at the same clock speed has shrunk from 60%+ to about 10%, power consumption has tumbled, and it also looks like AMD scales better as more cores are added. Unless you're just playing old or unoptimised games, or work in a corporate environment where money is no object, I don't see how AMD wouldn't be a viable alternative. That's just me, though - I'm really looking forward to your reasons.
    Reply
  • Gothmoth - Tuesday, July 25, 2017 - link

    no first of = stop arguing with stupid trolls... Reply
  • prisonerX - Monday, July 24, 2017 - link

    I can double my IPC by having another core. Are you really that dumb? Reply
  • Hurr Durr - Tuesday, July 25, 2017 - link

    AMD victim calling anyone dumb is peak ironing. You guys are out in force today, does it really hurt so bad? Reply
  • wira123 - Tuesday, July 25, 2017 - link

    yeah intel victim is in full force as well today, which is indeed ironic Reply

Log in

Don't have an account? Sign up now