Benchmarking Performance: CPU Web Tests

One of the issues when running web-based tests is the nature of modern browsers to automatically install updates. This means any sustained period of benchmarking will invariably fall foul of the 'it's updated beyond the state of comparison' rule, especially when browsers will update if you give them half a second to think about it. Despite this, we were able to find a series of commands to create an un-updatable version of Chrome 56 for our 2017 test suite. While this means we might not be on the bleeding edge of the latest browser, it makes the scores between CPUs comparable.

SunSpider 1.0.2 [link]

The oldest web-based benchmark in this portion of our test is SunSpider. This is a very basic javascript algorithm tool, and ends up being more a measure of IPC and latency than anything else, with most high performance CPUs scoring around about the same. The basic test is looped 10 times and the average taken. We run the basic test 4 times.

Web: SunSpider on Chrome 56

Mozilla Kraken 1.1 [link]

Kraken is another Javascript based benchmark, using the same test harness as SunSpider, but focusing on more stringent real-world use cases and libraries, such as audio processing and image filters. Again, the basic test is looped ten times, and we run the basic test four times.

Web: Mozilla Kraken 1.1 on Chrome 56

Google Octane 2.0 [link]

Along with Mozilla, as Google is a major browser developer, having peak JS performance is typically a critical asset when comparing against the other OS developers. In the same way that SunSpider is a very early JS benchmark, and Kraken is a bit newer, Octane aims to be more relevant to real workloads, especially in power constrained devices such as smartphones and tablets.

Web: Google Octane 2.0 on Chrome 56

WebXPRT 2013 and 2015 [link]

While the previous three benchmarks do calculations in the background and represent a score, WebXPRT is designed to be a better interpretation of visual workloads that a professional user might have, such as browser based applications, graphing, image editing, sort/analysis, scientific analysis and financial tools. Web2013 is the older tool, superceded by Web2015, however both still are highly relevant for high-performance web applications today. 

Web: WebXPRT 13 on Chrome 56

Web: WebXPRT 15 on Chrome 56

Benchmarking Performance: CPU Rendering Tests Benchmarking Performance: CPU Encoding Tests
Comments Locked

254 Comments

View All Comments

  • SkipPerk - Wednesday, May 3, 2017 - link

    These are low-end CPU's. People use those for gaming and web-surfing. I have a proper Xeon machine at work like a normal person. Not to mention, you reference video software. What tiny percentage of computer users ever own or use video software? That is a tiny industry. It reminds me of the silly youtube reviews where the reviewer assumes everyone is editing videos, when less than one percent of us will ever do so.

    Most people buying non-Xeon CPU's really will be using basic software (MS Office, WinZip,...) or games. The only time I have used non-Xeon CPU's for work was when I had software that loved clock speed. Then I got a bunch of 6-core's and overclocked them (it was funny to watch the guys at Microcenter as I bought ten $1k CPUs and cheesy AIO water coolers). Otherwise one uses the right tool for the job.
  • AndrewJacksonZA - Tuesday, April 11, 2017 - link

    On the last page, "On The Benchmark Results"
    "Looking at the results, it’s hard to notice the effect that 12 threads has on multithreaded CPU tests."
    Don't you mean that it's NOT hard to notice?
  • Drumsticks - Tuesday, April 11, 2017 - link

    I didn't see the 7600k in gaming benchmarks, was that a mistake/not ready, or is it on purpose?

    Thanks for the review guys! This new benchmark suite looks phenomenal!
  • mmegibb - Tuesday, April 11, 2017 - link

    I was disappointed not to see the i5-7600k in the gaming benchmarks. Perhaps it wouldn't be much different than the i5-7600, but I have sometimes seen a difference. For my next build, it's looking like it's between the 1600x and the 7600k.
  • fanofanand - Tuesday, April 11, 2017 - link

    "Platform wise, the Intel side can offer more features on Z270 over AM4"

    Aside from Optane support, what does Z270 offer that AM4 doesn't?
  • MajGenRelativity - Tuesday, April 11, 2017 - link

    Z270 has more PCIe lanes off the chipset for controllers and such that AM4 does not
  • fanofanand - Tuesday, April 11, 2017 - link

    I won't disagree with that, but I'm not sure a few extra pci-e lanes is considered a feature. Features are typically something like M.2 support, built-in wifi, things like that. The extra pci-e lanes allows for MORE connected devices, but is a few extra pci-e lanes really considered a feature anymore? With Optane being worthless for 99.99999% of consumers, I'm just not seeing where Z270 gives more for the extra money.
  • JasonMZW20 - Tuesday, April 11, 2017 - link

    Let's do a rundown:

    Ryzen + X370
    20 (3.0) + 8 (2.0)
    Platform usable total: 28

    Core i7 + Z270
    16 + 14 (all 3.0)
    Platform usable total: 30

    Intel's Z270 spec sheet is a little disingenuous, as yes it does have a maximum of 24 lanes, but 10 are reserved for actual features like SATA and USB 2.0/3.x. 14 can be used by a consumer, giving you a total of 2 NVMe x4 + 1 NVMe x2 leaving x4 for other things like actual PCIe slots. That 3rd NVMe slot may share PCIe lanes with a PCIe add-in slot, if configured that way.

    Ryzen PCIe config (20 lanes): 1x16, 2x8 for graphics and x4 NVMe (or x2 SATA when NVMe is not used)

    Core i7 config (16 lanes): 1x16, 2x8, or 1x8+2x4 for graphics

    They're actually pretty comparable.
  • mat9v - Tuesday, April 11, 2017 - link

    No, not more PCIEx lines, those from chipset are virtual, they all go to CPU through DMI bus that is equivalent to (at best) 4 lines of PCIEx 3.0. All those chips (Intel and AMD) offer 16 lines from CPU for graphic card, but Zen also offers 4 lines for NVMe. Chipsets are connected by DMI (in Intel) and 4 lines of PCIEx 3.0 (in AMD), so that is equal, now Intel from those DMI lines offer virtual 24 lines of PCIEx 3.0 (a laugh and half) while AMD quite correctly offers 8 lines of PCIEx 2.0 (equivalent to 4 lines of PCIEx 3.0).
  • psychobriggsy - Wednesday, April 12, 2017 - link

    Indeed. If a user is going to need more than that, they're more likely going to be plumping for a HEDT system anyway. AMD's solution is coming in a bit, but that should be able to ramp up the IO significantly.

Log in

Don't have an account? Sign up now