First Thoughts

Since our Optane Memory sample died after only about a day of testing, we cannot conduct a complete analysis of the product or make any final recommendations. With that said, the early indications from the benchmarks we were able to complete are mostly very positive reflections of the performance of the Intel Optane Memory.

As a cache device, the Optane Memory brought a hard drive-based system's SYSmark scores up to the level of mainstream SSDs. These averages do not capture differences in the latency distributions of the Optane cache+hard drive configuration vs a flash SSD. In the Optane+hard drive configuration, a cache hit will be almost 1000 times faster than a cache miss, resulting in a very bimodal distribution. The flash SSDs mostly occupy the territory between the performance of Optane and of the hard drive. It's possible that a mainstream flash SSD could deliver a user experience with fewer noticeable delays than the Optane caching experience with the occasional inevitable cache miss. Overall, however, the Optane cache delivers a remarkable improvement over just a hard drive, and the 32GB cache capacity we tested is clearly large enough to be of substantial use.

As a standalone drive, the Optane Memory breaks a few records that were set by the Intel Optane SSD DC P4800X enterprise drive just last week. The Optane Memory is more tuned for small transfer sizes and offers even better QD1 random read performance. These differences seem like exactly the right optimizations to make for a drive focused on client workloads. The throughput at higher queue depths is nowhere near what the P4800X delivers and falls behind what more expensive consumer SSDs can offer, but those situations make up a very small portion of client workloads. The first and only batch of synthetic tests we were able to run on the Optane Memory were derived from the enterprise SSD tests used on the Optane SSD DC P4800X, and they cast the consumer flash SSDs in an unrealistically bad light. A typical desktop user has little reason to care how well their SSD handles multiple threads performing sustained sequential transfers on a full drive, so the Optane Memory's stellar performance there should not lead users to prefer an Optane cached hard drive setup over an all solid state configuration.

The one area where we are ready to draw some conclusions is power consumption. We still need to conduct further analysis of the Optane Memory's power use under load, but its idle power situation is simple: the Optane Memory lacks any meaningful power saving mode. It is rated for 1W at idle and that's the lowest we saw it get throughout our short time testing it. 1W is something desktop users can shrug off; a typical gaming desktop dedicates more power than that to decorative LEDs. But Optane Memory is also intended for mobile use, and the first systems announced to offer Optane Memory were Lenovo ThinkPads. Adding a minimum of 1W on top of the power drawn by a mechanical hard drive will not help battery life, no matter how much faster it makes the storage system.

With Optane Memory, Intel seems to finally have the cache device they've been needing for a decade to make SSD caching viable. It's fast in spite of its low capacity, something flash based cache devices could never pull off. Optane Memory is also more affordable at $44 and $77 than Intel's previous cache devices.

With that said, however, I wonder whether it may all be too little, too late. SSD caching has some unavoidable limitations: cold caches, cache evictions when the cache proves too small, and the added complexity of a tiered setup. With those disadvantages, Optane Memory enters a market where the price of flash SSDs means there's already very little reason for consumer machines to use a mechanical hard drive as primary storage. Instead, the best case scenario here appears to be enabling the capacity benefits of tiered storage - offering nimble systems with 1TB+ of cheap storage and is presented to the user as a single drive - but without as many of the drawbacks of earlier NAND-based caches.

In some sense, Optane Memory may just be a stop-gap product for the consumer market until Intel is able to deliver usefully large Optane SSDs for consumers. But those SSDs are likely to arrive with prohibitively high prices if they ship later this year as planned. 3D XPoint memory has arrived and is poised to revolutionize parts of the enterprise storage market, but it may not be ready to have a meaningful impact on the consumer market.

Mixed Read/Write And Idle Power Consumption
Comments Locked

110 Comments

View All Comments

  • BrokenCrayons - Monday, April 24, 2017 - link

    A desktop Linux distro would fit nicely on it with room for local file storage. I've lived pretty happily with a netbook that had a 32GB compact flash card on a 2.5 inch SATA adapter that had Linux Mint 17.3 on it. The OS and default applications used less than 8GB of space. I didn't give it a swap partition since 2GB was more than enough RAM under Linux (system was idle at less than 200MB and I never saw it demand more than 1.2GB when I was multi-tasking). As such, there was lots of space to store my music, books, and pics of my cat.
  • ddriver - Monday, April 24, 2017 - link

    And imagine how well DOS will run. And you have ample space for application and data storage. 32 gigs - that's what dreams were made of in the early 90s. Your music, books and cat pics are just icing on the cake. Let me guess, 64 kbit mp3s right?
  • BrokenCrayons - Monday, April 24, 2017 - link

    I'm impressed at the level of your insecurity.
  • mkozakewich - Thursday, April 27, 2017 - link

    I've made the decision to never read any comment with his name above, but sometimes I accidentally miss it.
  • DanNeely - Monday, April 24, 2017 - link

    Looking at the size of it, I'm wondering why they didn't make a 48GB model that would fill up the 80mm stick fully. Or, and unless the 3xpoint dies fully fill the area in the packages make them slightly smaller to support the 2260 form factor (after accounting for the odds and ends at the end of the stick the current design it looks like it's just too big to fit on the smaller size).
  • CaedenV - Monday, April 24, 2017 - link

    Once again, I have to ask.... who on earth is this product for?
    So you have a cheap $300 laptop, which is going to have a terrible display, minimal RAM, and a small HDD or eMMC drive... are they expecting these users to spring for one of these drives to choke their CPU?

    Maybe a more mainstream $5-900 laptop where price is still ultra competitive. What sales metric does this add to which will promote sales over a cheaper device with seemingly the same specs? Either it will have a SSD onboard already and the performance difference will be un-noticed, or it will have a large HDD and the end-user is going to scratch their heads wondering why 2 seemingly identical computers have 4GB of RAM and 1TB HDD, but one costs $100 more.

    Ok, so maybe it is in the premium $1-2000 market. Intel says it isn't aiming at these devices, but they are Intel. Maybe they think a $1-2000 laptop is an 'affordable' mass-market device? Here you are talking about ultrabooks; super slim devices with SSDs... oh, and they only have 1 PCIe slot on board. Just add a 2nd one? Where are you going to put it? Going to add more weight? More thickness? A smaller battery? And even after you manage to cram the part in one of these laptops... what exactly is going to be the performance benefit? An extra half a second when coming out of sleep mode? Word opens in .5 sec instead of .8 sec? Yes, these drives are faster than SSDs... but we are way past the point of where software load times matter at all.

    So then what about workstation laptops. That is where these look like they will shine. A video editing laptop, or desktop replacement. And for those few brave souls using such a machine with a single HDD or SSD this seems like it would work well... except I don't know anyone like that. These are production machines, which means RAID1 in case of HDD failure. And this tech does not work with RAID (even though I don't see why not... seems like they could easily integrate this into the RAID controller). But maybe they could use the drive as a 3rd small stand-alone render drive... but that only works in linux, not windows. So, nope, this isn't going to work in this market either.

    And that brings us to the desktop market. For the same price/raid concerns this product really doesn't work for desktops either, but the Optate SSDs coming out later this year sound interesting... but here we still have a pretty major issue;
    SATA3 vs PCIe m.2 drives have an odd problem. On paper the m.2 drives benchmark amazingly well. And in production environments for rendering they also work really well. But for work applications and games people are reporting that there is little to no difference in performance. Intel is trying to make the claim that the issue is due to access time on the controllers, and that the extremely fast access time on Optane will finally get us past all that. But I don't think that is true. For work applications most of the wait time is either on the CPU or the network connection to the source material. The end-user storage is no longer the limiting factor in these scenarios. For games, much of the load time is in the GPU taking textures and game data and unpackaging them in the GPU's vRAM for use. The CPU and HDD/SSD are largely idle during this process. Even modern HDDs keep up pretty well with their SSD brethren on game load times. This leads me to believe that there is something else that is slowing down the whole process.

    And that single bottleneck in the whole thing is Intel. It is their CPUs that have stopped getting faster. It is their RAM management that rather sucks and works the same speed no matter what your RAM is clocked at. It is the whole x86 platform that is stagnant and inefficient which is the real issue here. It is time for Intel to stop focusing on its next die-shrink, and start working on a new modern efficient instruction set and architecture that can take advantage of all this new tech! Backwards compatibility is killing the computer market. Time to make a clean break on the hardware side for a new way of doing things. We can always add software compatibility in an emulation layer so we can still use our old OSs and tools. Its going to be a mess, but we are at a point where it needs to be done.
  • Cliff34 - Monday, April 24, 2017 - link

    It seems to me that this product doesn't really make sense for your average consumer. Let's assume you don't need to upgrade your hardware to use Optane memory as cache, why not just spend the money to get a faster and a bigger SSD drive?

    If that's the case, wouldn't it limited to only a few specific case where someone really need the Optane speed?
  • mkozakewich - Thursday, April 27, 2017 - link

    An extra 4 GB of DDR4 seems to be $30-$40, so getting 16 GB of swap drive for the same price might be a good way to go.
    I agree that using it for caching seems a little pointless.
  • zodiacfml - Monday, April 24, 2017 - link

    Wow, strong at random perf where SSDs are weak. I guess this will be the drive for me. Next gen please.
  • p2131471 - Monday, April 24, 2017 - link

    I wish you'd make interactive graphs for random reads. Or at least provide numbers in a table. Right now I can only approximate the exact values.

Log in

Don't have an account? Sign up now