Execution, Load/Store, INT and FP Scheduling

The execution of micro-ops get filters into the Integer (INT) and Floating Point (FP) parts of the core, which each have different pipes and execution ports. First up is the Integer pipe which affords a 168-entry register file which forwards into four arithmetic logic units and two address generation units. This allows the core to schedule six micro-ops/cycle, and each execution port has its own 14-entry schedule queue.

The INT unit can work on two branches per cycle, but it should be noted that not all the ALUs are equal. Only two ALUs are capable of branches, one of the ALUs can perform IMUL operations (signed multiply), and only one can do CRC operations. There are other limitations as well, but broadly we are told that the ALUs are symmetric except for a few focused operations. Exactly what operations will be disclosed closer to the launch date.

The INT pipe will keep track of branching instructions with differential checkpoints, to cut down on storing redundant data between branches (saves queue entries and power), but can also perform Move Elimination. This is where a simple mov command between two registers occurs – instead of inflicting a high energy loop around the core to physically move the single instruction, the core adjusts the pointers to the registers instead and essentially applies a new mapping table, which is a lower power operation.

Both INT and FP units have direct access to the retire queue, which is 192-entry and can retire 8 instructions per cycle. In some previous x86 CPU designs, the retire unit was a limiting factor for extracting peak performance, and so having it retire quicker than dispatch should keep the queue relatively empty and not near the limit.

The Load/Store Units are accessible from both AGUs simultaneously, and will support 72 out-of-order loads. Overall, as mentioned before, the core can perform two 16B loads (2x128-bit) and one 16B store per cycle, with the latter relying on a 44-entry Store queue. The TLB buffer for the L2 cache for already decoded addresses is two level here, with the L1 TLB supporting 64-entry at all page sizes and the L2 TLB going for 1.5K-entry with no 1G pages. The TLB and data pipes are split in this design, which relies on tags to determine if the data is in the cache or to start the data prefetch earlier in the pipeline.

The data cache here also has direct access to the main L2 cache at 32 Bytes/cycle, with the 512 KB 8-way L2 cache being private to the core and inclusive. When data resides back in L1 it can be processed back to either the INT or the FP pipes as required.

Moving onto the floating point part of the core, and the first thing to notice is that there are two scheduling queues here. These are listed as ‘schedulable’ and ‘non-schedulable’ queues with lower power operation when certain micro-ops are in play, but also allows the backup queue to sort out parts of the dispatch in advance via the LDCVT. The register file is 160 entry, with direct FP to INT transfers as required, as well as supporting accelerated recovery on flushes (when data is written to a cache further back in the hierarchy to make room).

The FP Unit uses four pipes rather than three on Excavator, and we are told that the latency in Zen is reduced as well for operations (though more information on this will come at a later date). We have two MUL and two ADD in the FP unit, capable of joining to form two 128-bit FMACs, but not one 256-bit AVX. In order to do AVX, the unit will split the operations accordingly. On the counter side each core will have 2 AES units for cryptography as well as decode support for SSE, AVX1/2, SHA and legacy mmx/x87 compliant code.

Fetch and Decode The Core Complex, Caches, and Fabric
Comments Locked

574 Comments

View All Comments

  • ABR - Sunday, March 5, 2017 - link

    Are there any examples of games at 1080p where this actually matters? (I.e., not a drop from 132 to 108 fps, but from 65 to 53 or 42 to 34?)
  • ABR - Monday, March 6, 2017 - link

    I mean at 1080p. (Edit, edit...)
  • 0ldman79 - Monday, March 6, 2017 - link

    That's my thought as well.

    Seriously, it isn't like we're talking unplayable, it is still ridiculous gaming levels. It is almost guaranteed to be a scheduler problem in Windows judging by the performance deficit compared to other applications. If it isn't, it is still running very, very well.

    Hell, I can play practically anything I can think of on my FX 6300, I don't really *need* a better CPU right now, I'm just really, really tempted and looking for excuses (I can't encode at the same speed in software as my Nvidia encoder, damn, I need to upgrade...)
  • Outlander_04 - Monday, March 6, 2017 - link

    Do you think anyone building a computer with a $500 US chip is going to just be spending $120 on a 1080p monitor?
    More likely they will be building it for higher resolutions
  • Notmyusualid - Tuesday, March 7, 2017 - link

    I've seen it happen...
  • mdriftmeyer - Tuesday, March 7, 2017 - link

    Who gives a crap if you've seen it happen. Your experience is an anomaly relative to the totality of statistical data.
  • Notmyusualid - Wednesday, March 8, 2017 - link

    Or somebody was just happy with their existing screen?

    I can actually point to two friends with 1080 screens, both lovely water cooled rigs, one is determined to keep his high-freq 1080 screen, and the other one just doesn't care. So facts is facts son.

    I guess it is YOU that gives that crap afterall.
  • Zaggulor - Thursday, March 9, 2017 - link

    Statistical data suggests that people don't actually often get a new display when they change a GPU and quite often that same display will be moved to a new rig too.

    Average upgrade times for components are:

    CPU: ~4.5 years
    GPU: ~2.5 years
    Display: ~7 years

    These days you can also use any unused GPU resources for downsampling even if your CPU can't push any more frames. Both GPU vendors have build in support for it (VSR/DSR).
  • hyno111 - Wednesday, March 8, 2017 - link

    Or a $200 1080p/144Hz/Freesync monitor.
  • Marburg U - Sunday, March 5, 2017 - link

    I guess it's time to retire my Core 2 Quad.

Log in

Don't have an account? Sign up now