Thoughts and Comparisons

Throughout AMD's road to releasing details on Zen, we have had a chance to examine the information on the microarchitecture often earlier than we had expected to each point in the Zen design/launch cycle. Part of this is due to the fact that internally, AMD is very proud of their design, but some extra details (such as the extent of XFR, or the size of the micro-op cache), AMD has held close to its chest until the actual launch. With the data we have at hand, we can fill out a lot of information for a direct comparison chart to AMD’s last product and Intel’s current offerings.

CPU uArch Comparison
  AMD Intel
  Zen
8C/16T
2017
Bulldozer
4M / 8T
2010
Skylake
Kaby Lake
4C / 8T
2015/7
Broadwell
8C / 16T
2014
L1-I Size 64KB/core 64KB/module 32KB/core 32KB/core
L1-I Assoc 4-way 2-way 8-way 8-way
L1-D Size 32KB/core 16KB/thread 32KB/core 32KB/core
L1-D Assoc 8-way 4-way 8-way 8-way
L2 Size 512KB/core 1MB/thread 256KB/core 256KB/core
L2 Assoc 8-way 16-way 4-way 8-way
L3 Size 2MB/core 1MB/thread >2MB/cire 1.5-3MB/core
L3 Assoc 16-way 64-way 16-way 16/20-way
L3 Type Victim Victim Write-back Write-back
L0 ITLB Entry 8 - - -
L0 ITLB Assoc ? - - -
L1 ITLB Entry 64 72 128 128
L1 ITLB Assoc ? Full 8-way 4-way
L2 ITLB Entry 512 512 1536 1536
L2 ITLB Assoc ? 4-way 12-way 4-way
L1 DTLB Entry 64 32 64 64
L1 DTLB Assoc ? Full 4-way 4-way
L2 DTLB Entry 1536 1024 - -
L2 DTLB Assoc ? 8-way - -
Decode 4 uops/cycle 4 Mops/cycle 5 uops/cycle 4 uops/cycle
uOp Cache Size 2048 - 1536 1536
uOp Cache Assoc ? - 8-way 8-way
uOp Queue Size ? - 128 64
Dispatch / cycle 6 uops/cycle 4 Mops/cycle 6 uops/cycle 4 uops/cycle
INT Registers 168 160 180 168
FP Registers 160 96 168 168
Retire Queue 192 128 224 192
Retire Rate 8/cycle 4/cycle 8/cycle 4/cycle
Load Queue 72 40 72 72
Store Queue 44 24 56 42
ALU 4 2 4 4
AGU 2 2 2+2 2+2
FMAC 2x128-bit 2x128-bit
2x MMX 128-bit
2x256-bit 2x256-bit

Bulldozer uses AMD-coined macro-ops, or Mops, which are internal fixed length instructions and can account for 3 smaller ops. These AMD Mops are different to Intel's 'macro-ops', which are variable length and different to Intel's 'micro-ops', which are simpler and fixed-length.

Excavator has a number of improvements over Bulldozer, such as a larger L1-D cache and a 768-entry L1 BTB size, however we were never given a full run-down of the core in a similar fashion and no high-end desktop version of Excavator will be made.

This isn’t an exhaustive list of all features (thanks to CPU WorldReal World Tech and WikiChip for filling in some blanks) by any means, and doesn’t paint the whole story. For example, on the power side of the equation, AMD is stating that it has the ability to clock gate parts of the core and CCX that are not required to save power, and the L3 runs on its own clock domain shared across the cores. Or the latency to run certain operations, which is critical for workflow if a MUL operation takes 3, 4 or 5 cycles to complete. We have been told that the FPU load is two cycles quicker, which is something. The latency in the caches is also going to feature heavily in performance, and all we are told at this point is that L2 and L3 are lower latency than previous designs.

A number of these features we’ve already seen on Intel x86 CPUs, such as move elimination to reduce power, or the micro-op cache. The micro-op cache is a piece of the puzzle we wanted to know more about from day one, especially the rate at which we get cache hits for a given workload. Also, the use of new instructions will adjust a number of workloads that rely on them. Some users will lament the lack of true single-instruction AVX-2 support, however I suspect AMD would argue that the die area cost might be excessive at this time. That’s not to say AMD won’t support it in the future – we were told quite clearly that there were a number of features originally listed internally for Zen which didn’t make it, either due to time constraints or a lack of transistors.

We are told that AMD has a clear internal roadmap for CPU microarchitecture design over the next few generations. As long as we don’t stay for so long on 14nm similar to what we did at 28/32nm, with IO updates over the coming years, a competitive clock-for-clock product (even to Broadwell) with good efficiency will be a welcome return.

Power, Performance, and Pre-Fetch: AMD SenseMI Chipsets and Motherboards
Comments Locked

574 Comments

View All Comments

  • mikeZZZ - Friday, March 3, 2017 - link

    Anadtech, can we please run closer to real life scenarios such as a gaming benchmark with a file compression benchmark running at the same time. Even gaming enthusiasts run more than one program at a time. For example, file decompression in the background while playing a game, or baseball game streaming in a small window while playing a game. You already have many individual benchmarks, so why not go the extra but significant benchmark of running two? We know this favors the higher core CPUs (maybe even Ryzen 7 1700 over all other lower core ones CPUs) but that is closer to real life and should be very meaningful to someone wanting to make an informed purchase.
  • ValiumMm - Saturday, March 4, 2017 - link

    Would also like to see this
  • UrQuan3 - Friday, March 3, 2017 - link

    Just want to put out a quick comment about benchmarking with Handbrake. In dealing with Broadwell-E, and especially ThunderX, I've found that Handbrake often doesn't scale well past about 10 cores, and really doesn't scale well past 16 or so. What seems to happen is that the single-threaded parts of Handbrake tend to dominate the encode time. In extreme cases, ultra-fast and placebo will take almost the same amount of time as x264 is consuming input faster than the rest of Handbrake can generate it. On ThunderX, I've found I can complete four 1080p placebo encodes in the same amount of time that I can complete one. I would expect a similar result on a 48 core Intel, though I do not have access to one beyond 24 cores. Turbo boost would hide this effect a bit.

    I am not knocking using Handbrake for benchmarking. The Handbrake and ray-trace results are the two that I care about most. I just thought I'd give a heads up about this limitation. You can check CPU usage statistics to get an indication of when you are running up against this limit.

    Oh, and I am very excited to see multiple ray-tracers in your runs. Please continue.
  • Meteor2 - Saturday, March 4, 2017 - link

    Presumably though you can have several x264 jobs running simultaneously on that hardware? So while your time to encode a certain piece doesn't decrease, you have more total-throughput (e.g. encoding several different bitrates for adaptive streaming). Should give good efficiency too on a larger Broadwell-E or a ThunderX.
  • UrQuan3 - Tuesday, March 7, 2017 - link

    Exactly. It's the first time I've thought about installing a queue manager for a single computer.
  • jade5419 - Saturday, March 4, 2017 - link

    I agree with this. In my experience Handbrake has a core / thread limit.

    I have a Z600 system with dual Xeon 5570 @ 2.93GHz, 6 core / 12 threads (total 24 threads), 48GB of RAM and a Z620 system with dual Xeon E5-2690 @ 2.9GHz 8 core / 16 threads (total 32 threads), 64GB RAM.

    The two systems transcode video at the same speed using Handbrake 1.0.3. Monitoring CPU usage shows all threads of the Z600 at 100% utilization whereas the CPU utilization on the Z620 is approximately 80%.
  • Notmyusualid - Sunday, March 5, 2017 - link

    Ever tried running GTA5 on 28 cores?

    It doesn't work. You have to adjust the game 'launchers' core affinity to < 26 cores or it won't even load.

    Given this discovery, I expect there are many more applications out there, that may crap-out as we see more and more cores come into the mainstream.

    Just a thought.
  • mapesdhs - Sunday, March 5, 2017 - link

    I'd love to know why this happens. I'm guessing something dumb within Windows.
  • Outlander_04 - Friday, March 3, 2017 - link

    There is more than enough good news to make me want to buy a 6 core Ryzen when they become available .
    Likely that will be the sweet spot for gamers
  • 0ldman79 - Saturday, March 4, 2017 - link

    I'm looking forward to seeing Ryzen updated in the bench.

    There aren't any apps or benchmarks that cross over between the FX series and the Ryzen series, so we can't do any side by side comparison.

    Great review guys. Looking forward to the six core Ryzen. I think just like the FX series the six core will be the sweet spot.

Log in

Don't have an account? Sign up now