Thoughts and Comparisons

Throughout AMD's road to releasing details on Zen, we have had a chance to examine the information on the microarchitecture often earlier than we had expected to each point in the Zen design/launch cycle. Part of this is due to the fact that internally, AMD is very proud of their design, but some extra details (such as the extent of XFR, or the size of the micro-op cache), AMD has held close to its chest until the actual launch. With the data we have at hand, we can fill out a lot of information for a direct comparison chart to AMD’s last product and Intel’s current offerings.

CPU uArch Comparison
  AMD Intel
  Zen
8C/16T
2017
Bulldozer
4M / 8T
2010
Skylake
Kaby Lake
4C / 8T
2015/7
Broadwell
8C / 16T
2014
L1-I Size 64KB/core 64KB/module 32KB/core 32KB/core
L1-I Assoc 4-way 2-way 8-way 8-way
L1-D Size 32KB/core 16KB/thread 32KB/core 32KB/core
L1-D Assoc 8-way 4-way 8-way 8-way
L2 Size 512KB/core 1MB/thread 256KB/core 256KB/core
L2 Assoc 8-way 16-way 4-way 8-way
L3 Size 2MB/core 1MB/thread >2MB/cire 1.5-3MB/core
L3 Assoc 16-way 64-way 16-way 16/20-way
L3 Type Victim Victim Write-back Write-back
L0 ITLB Entry 8 - - -
L0 ITLB Assoc ? - - -
L1 ITLB Entry 64 72 128 128
L1 ITLB Assoc ? Full 8-way 4-way
L2 ITLB Entry 512 512 1536 1536
L2 ITLB Assoc ? 4-way 12-way 4-way
L1 DTLB Entry 64 32 64 64
L1 DTLB Assoc ? Full 4-way 4-way
L2 DTLB Entry 1536 1024 - -
L2 DTLB Assoc ? 8-way - -
Decode 4 uops/cycle 4 Mops/cycle 5 uops/cycle 4 uops/cycle
uOp Cache Size 2048 - 1536 1536
uOp Cache Assoc ? - 8-way 8-way
uOp Queue Size ? - 128 64
Dispatch / cycle 6 uops/cycle 4 Mops/cycle 6 uops/cycle 4 uops/cycle
INT Registers 168 160 180 168
FP Registers 160 96 168 168
Retire Queue 192 128 224 192
Retire Rate 8/cycle 4/cycle 8/cycle 4/cycle
Load Queue 72 40 72 72
Store Queue 44 24 56 42
ALU 4 2 4 4
AGU 2 2 2+2 2+2
FMAC 2x128-bit 2x128-bit
2x MMX 128-bit
2x256-bit 2x256-bit

Bulldozer uses AMD-coined macro-ops, or Mops, which are internal fixed length instructions and can account for 3 smaller ops. These AMD Mops are different to Intel's 'macro-ops', which are variable length and different to Intel's 'micro-ops', which are simpler and fixed-length.

Excavator has a number of improvements over Bulldozer, such as a larger L1-D cache and a 768-entry L1 BTB size, however we were never given a full run-down of the core in a similar fashion and no high-end desktop version of Excavator will be made.

This isn’t an exhaustive list of all features (thanks to CPU WorldReal World Tech and WikiChip for filling in some blanks) by any means, and doesn’t paint the whole story. For example, on the power side of the equation, AMD is stating that it has the ability to clock gate parts of the core and CCX that are not required to save power, and the L3 runs on its own clock domain shared across the cores. Or the latency to run certain operations, which is critical for workflow if a MUL operation takes 3, 4 or 5 cycles to complete. We have been told that the FPU load is two cycles quicker, which is something. The latency in the caches is also going to feature heavily in performance, and all we are told at this point is that L2 and L3 are lower latency than previous designs.

A number of these features we’ve already seen on Intel x86 CPUs, such as move elimination to reduce power, or the micro-op cache. The micro-op cache is a piece of the puzzle we wanted to know more about from day one, especially the rate at which we get cache hits for a given workload. Also, the use of new instructions will adjust a number of workloads that rely on them. Some users will lament the lack of true single-instruction AVX-2 support, however I suspect AMD would argue that the die area cost might be excessive at this time. That’s not to say AMD won’t support it in the future – we were told quite clearly that there were a number of features originally listed internally for Zen which didn’t make it, either due to time constraints or a lack of transistors.

We are told that AMD has a clear internal roadmap for CPU microarchitecture design over the next few generations. As long as we don’t stay for so long on 14nm similar to what we did at 28/32nm, with IO updates over the coming years, a competitive clock-for-clock product (even to Broadwell) with good efficiency will be a welcome return.

Power, Performance, and Pre-Fetch: AMD SenseMI Chipsets and Motherboards
Comments Locked

574 Comments

View All Comments

  • Cooe - Sunday, February 28, 2021 - link

    Find me these so-called people buying Intel HEDT CPU's (aka OG Ryzen 7's direct competition) for gaming & never for HPC uses.... Oh wait. They don't exist.
  • Haawser - Thursday, March 2, 2017 - link

    Yeah, but if you're a gamer who streams, Ryzen is waaaay better than anything Inter offer for $499. Especially if you're gaming at 4K, or going to be. Different people have different needs, even gamers.
  • Jimster480 - Thursday, March 2, 2017 - link

    Yes but no,
    Because Broadwell-E and Haswell-E HEDT platforms are in the same boat as Ryzen.

    But this is what this Ryzen 7 release is meant to do.
    Compete with the HEDT platforms, not against the "APU" chips.
    Those chips will come later, albeit with much higher clockspeeds to compete with intel.
    For now you have Intel with 10-20% clockspeed advantages in clockspeed dependent applications.
  • Meteor2 - Saturday, March 4, 2017 - link

    I hope you're right but there's no indication they will be clocked higher. AMD has access to processes which are generation behind Intel's, at least for a couple of years. We can't expect miracles.
  • nos024 - Thursday, March 2, 2017 - link

    Lol, butt hurt? Why even bother running gaming benchmarks? You even said it yourself that ryzen wont make it to your so called grown-up workstation because if low pcie count.

    So tell me who is this $500 Ryzen chip designed for? Not grown ups running workstation, or pathetic kiddies gamers...so theyre for Wannabes?
  • Tunnah - Thursday, March 2, 2017 - link

    He literally said it is ideal to replace his aging 3770k, he gave an example of how it will be used. Try more reading and less being a turd
  • ddriver - Thursday, March 2, 2017 - link

    Ryzen is that much more affordable that with the price difference I could have built another whole system, dedicated to running the 2 HBA adapters, thus saving on the need of 16 lanes. 40 - 16 is exactly 24, which is what ryzen has. If it was available a year ago I would have simply built two systems, offering a good 50-60% more CPU performance, double the GPU performance, with enough need to accommodate my IO needs, even if between two systems, that wouldn't have been much of an issue.

    The pci lane count is lower than intel E series chips, however it is still 50% higher than what you can get from intel outside the E series. It will actually suffice in most workstation scenarios, even if you end up running graphics at x8, which is not really a big deal.
  • ddriver - Thursday, March 2, 2017 - link

    "you even said it yourself that ryzen wont make it to your so called grown-up workstation because if low pcie count"

    I did not say that. Not all workstations require 40 pcie lanes. Most could do with 24. I was talking about my workstation in particular, which has plenty of pcie hardware. For the vast majority of HPC scenarios that would not be necessary, furthermore as already mentioned, with the saved money you can build additional systems dedicated to specific tasks, offloading both the need of more pcie lanes and the cpu time the attached hardware consumes.

    It remains to be seen how much IO will the server zen parts have. Ryzen is not particularly a workstation grade chip, it just happens to be GOOD ENOUGH to do the job. AMD give you 50% more performance and 50% more IO at the same or better price point, and I think they will do the same for the chips they actually design for workstation.

    It looks like the 16 core workstation chip will have 64 pcie lanes, and the 32 core - a whooping 128 lanes. So intel E series looks like a sad little orphan with its modest 40 lanes... And no, xeons aren't much better, they are in fact worse, the 24 core E7-8894 v4 only has a modest 32 lanes.

    So no, while I will not be replacing my main 10 core workstation with a ryzen, because that would win me nothing, I am definitely looking forward to replacing it next year with a Naples system, and I definitely wished ryzen was available last year as I could have spent my money much better than buying intel.
  • Intel999 - Thursday, March 2, 2017 - link

    "So tell me who is this $500 Ryzen chip designed for?"

    Logic would imply it is aimed at anyone that works in an environment where they need superior multithreading performance. For instance, anyone that has bought a 6900k or 6950k, but more importantly it is for those individuals that "wanted" to buy either of Intel's multi core champs but couldn't due to ridiculous prices.

    I'd dare to make a bet there are more people that wanted to buy a 6900k than there are people that actually did. Now they can buy one and still put food on the table this month.
  • FriendlyUser - Thursday, March 2, 2017 - link

    Exactly right. I was always tempted by the 6850K, but the price of the CPU+platform was simply ridiculous. For much less I got a faster CPU and a high-end MB. I won't miss the 40PCIe lanes.

Log in

Don't have an account? Sign up now