Web Server Performance

Writing about micro and entry level servers without a website benchmark would be unforgiveable. Most websites are based on the LAMP stack: Linux, Apache, MySQL, and PHP. Few people write html/PHP code from scratch these days, so we turned to a Drupal 7.21 based site. The web server is Apache 2.4.7 and the database is MySQL 5.5.38 on top of Ubuntu 14.04 LTS.

Drupal powers massive sites (e.g. The Economist and MTV Europe) and has a reputation of being a hardware resource hog. That is a price more and more developers happily pay for lowering the time to market of their work. We tested the Drupal website with our vApus stress testing framework and increased the number of connections from 5 to 300.

We report the maximum throughput achievable with 95% percent of request being handled faster than 1000 ms. Notice that these numbers are not comparable to the ones in the last Xeon E5 server review, where we measured throughput at 100 ms. We assume that if you deploy a full LAMP stack on micro servers, your first requirement is cost efficiency and not the lowest response time at all times. If you do require the lowest response time, it is a best practice to only deploy the front-end of your web server on such a server. We are looking into developing such a real-world benchmark for a later review.

Drupal Website

As the website load is a very bumpy curve with very short peaks of high CPU load and lots of lows, the Xeon E3-1200s operate at relatively high frequencies. Website workloads work well with Hyper-Threading as the low instruction level parallelism in one thread leaves a lot of headroom for another thread. Hyper-Threading delivers in this environment: the 8-thread Xeon E3-1265L v2 at 2.5-3.4GHz is quite a bit faster than the Xeon E3-1220 v2 at 3.1-3.3GHz.

We really wonder if anyone ever bought an Atom Saltwell based server of SeaMicro or HP to run web workloads. Those customers were either very brave or very naive; notice how the Xeon E3 is roughly 10 times faster (and as much as 17X faster)!

The Atom C2750 still performs rather poorly and sustain only about 42% of the requests of the Xeon E3-1230L. We suspect that the lack of an L3 cache that allows cores to sync threads quickly is one of the culprits. The MySQL back-end is included in this web benchmark, and this is one of the reasons that our benchmark prefers the Xeon E3. The X-Gene does not benefit much from the rather slow L3 cache and performs more or less like the Atom C2750.

Do not overestimate the effect of including the MySQL backend in our benchmark however. MySQL consumes about 20% of the CPU cycles. There is no denying that high clock speeds and simultaneous multi-threading are a very powerful mix to handle web requests.

According to some academic studies, the Atom C2750 should do better in typical scale-out software such as web search, web front-ends, and media streaming, where no syncing between threads is necessary.

Java Server Performance MySQL Performance: Sysbench
POST A COMMENT

47 Comments

View All Comments

  • gdansk - Monday, March 09, 2015 - link

    xgene is not looking so great. Even if it is 50% more efficient as they promise they'll still be behind Atom. Reply
  • Samus - Monday, March 09, 2015 - link

    HP Moonshot chassis are still *drool* Reply
  • Krysto - Monday, March 09, 2015 - link

    The main problem with the non-Intel systems is not only that they use older processes compared to Intel, but that they use older processes even compared to the rest of the non-Intel chip industry. AMD is typically always behind 1 process node among non-Intel chip makers. If they'd at least use the cutting edge processes as they become available from non-Intel processes, maybe they'd stand a chance, especially now that the gap in process technologies is shrinking. Reply
  • Samus - Monday, March 09, 2015 - link

    AMD simply isn't as bad as people continually make them out to be. Yes, they're "behind" Intel but it's all in the approach. We are talking about two engineering houses that share nothing in common but a cross licensing agreement. AMD has very competitive CPU's to Intel's i5's for nearly half the price, but yes, they use more power (at times 1/3 more.)

    But facts are facts: AMD is the second high-tech CPU manufacture in the world. Not Qualcomm, not Samsung. It's pretty obvious AMD engineering talent spreads more diversity than anyone other than Intel, and potentially superior to Intel on GPU design (although this has obviously been shifting over the years as Intel hires more "GPU talent.")

    AMD in servers is a hard pill to swallow though. If purchasing based on price alone, it can be a compelling alternative, but for rack space or low-energy computing?
    Reply
  • Taneli - Tuesday, March 10, 2015 - link

    AMD doesn't even make it in top 10 semiconductor companies in sales. Qualcomm is three, Samsung semicondutors six and Intel almost ten times the size of AMD.

    Outside of the gaming consoles they are being completely overrun by competition.
    Reply
  • owan - Tuesday, March 10, 2015 - link

    I'm sorry, at one point I was an AMD fanboy, back when they actually deserved it based on their products, but you just sound like an apologist. Facts are the facts, FX processors aren't competitive with i5's in performance or power or performance/$ because they get smacked so hard they can't be cheap enough to make up for it. Their CPU designs are woefully out of date, their APU's are bandwidth starved and use way too much power to be useful in the one place they'd be great (mobile), and their lagging process tech means theres not much better coming on the horizon. I don't want to see them go, but at the rate ARM is eating up general computing share, it won't be long before AMD becomes completely irrelevant. It will be Intel vs. ARM and AMD will be an afterthought. Reply
  • xenol - Wednesday, March 11, 2015 - link

    Qualcomm is used in pretty much used in most cell phones in the US to the point you'd think Qualcomm is the only SoC manufacturer. I'm pretty sure that's also how it looks in most of the other markets as Korea. Plus even if their SoCs aren't being used, they're modems are heavily used.

    If anything, Qualcomm is bigger than AMD. Or rather, Qualcomm is the Intel of the SoC market.
    Reply
  • xenol - Wednesday, March 11, 2015 - link

    [Response to myself since I can't edit]
    Qualcomm's next major competitor is Apple. But that's about it.

    Also I meant to say other markets except Korea.
    Reply
  • CajunArson - Monday, March 09, 2015 - link

    Bear in mind that the Atom parts were commercially available in 2013, so they are by no means brand-new technology and the 14nm Atom upgrades will definitely help power efficiency even if raw performance doesn't jump a whole lot.

    Anandtech is also a bit behind the curve because Intel is about to release Xeon-D (8 Broadwell cores and integrated I/O in a 45 watt TDP, or lower), which is designed for exactly this type of workload and is going to massively improve performance in the low-power envelope sphere:

    http://techreport.com/review/27928/intel-xeon-d-br...
    Reply
  • SarahKerrigan - Monday, March 09, 2015 - link

    14nm server Atom isn't coming.

    http://www.eetimes.com/document.asp?doc_id=1325955

    "Atom will become a consumer only SoC."
    Reply

Log in

Don't have an account? Sign up now