Benchmark Configuration

Since Supermicro claims that these servers are capable of operating at inlet temperatures of 47°C (117 °F) while supporting Xeons with 135 W TDPs, we tested with two extreme processors. First off is the Xeon E5 2650L at 1.8GHz with a low 70W TDP and a very low Tcase of 65°C. It's low power but is highly sensitive to high temperatures. Second, we tested with the fastest Xeon E5 available: the Xeon E5 2697 v2. The TDP is 130W for 12 cores at 2.7GHz and Tcase is 86°C. This is a CPU that needs a lot of power but it's also resistant to high temperatures.

Supermicro 6027R-73DARF (2U Chassis)

CPU Two Intel Xeon processor E5-2697 v2 (2.7GHz, 12c, 30MB L3, 130W)

Two Intel Xeon processor E5-2650L v2 (1.7GHz, 10c, 25MB L3, 70 W)
RAM 64GB (8x8GB) DDR3-1600 Samsung M393B1K70DH0-CK0
Internal Disks 8GB flash disk to boot up, 1 GbE link to iSCSI SAN
Motherboard Supermicro X9DRD-7LN4F
Chipset Intel C602J
BIOS version R 3.0a (December the 6th, 2013)
PSU Supermicro 740W PWS-741P-1R (80+ Platinum)

All C-states are enabled in both the BIOS and ESXi.

How We Tested Temperature vs. CPU Load
POST A COMMENT

48 Comments

View All Comments

  • iTzSnypah - Tuesday, February 11, 2014 - link

    I wonder why nobody has tried geothermal liquid cooling. You could do it 2 ways. Either with a geothermal heat pump set up or cut out the middle man and just use the earth like you would a radiator in a liquid cooling loop. The only problem would be how many wells you would have to drill to cool up to 100MW (I'm thinking 20+ at a depth of at least 50ft). Reply
  • ShieTar - Tuesday, February 11, 2014 - link

    Its kind of easier to just use a nearby river than dig for and pump up ground water. That's what power stations and big chemical factories do. For everybody else, air-cooling is just easier and less expensive. Reply
  • iTzSnypah - Tuesday, February 11, 2014 - link

    You wouldn't be drilling for water. You drill a well so you can put pipe in it, fill it back up and then pump water through the pipes using the earth's constant temp (~20c) to cool your liquid which is warmer (>~30c). Reply
  • looncraz - Tuesday, February 11, 2014 - link

    I experimented with this (mathematically) and found that heat soak is a serious, variable, concern. If the new moisture is coming from the surface, this is not as much of an issue, but if it isn't, you could have a problem in short order. Then there are the corrosion and maintenance issues...

    The net result is that it is cheaper and easier to just install a few ten thousand gallon coolant holding tanks and keep them cool (but above ambient) and to cool the air in the server room(s). These tanks can be put inside a hill or in the ground for extra installation and a surface radiator system could allow using cold outside air to save energy.
    Reply
  • superflex - Wednesday, February 12, 2014 - link

    You obviously dont know have a clue about drilling costs.
    For a 2,000 s.f. home, a geothermal driller needs between 200-300 lineal feet of well bore to cool the house. In unconsolidated material, drilling costs per foot range from $15-$30/foot, depending on the rig. For drilling in rock, up the cost to $45/foot.
    For something that uses 80,000x more power than a typical home, what do you think the drilling costs would be?
    Go back to heating up Hot Pockets.
    Reply
  • chadwilson - Wednesday, February 19, 2014 - link

    That last statement was totally unnecessary. Your perfectly valid point was tarnished by your awful attitude. Reply
  • nathanddrews - Tuesday, February 11, 2014 - link

    Small scale, but really cool. Use PV to power your pumps...

    http://www.overclockers.com/forums/showthread.php?...
    Reply
  • Sivar - Tuesday, February 11, 2014 - link

    Geothermal heat pumps are only moderately more efficient than standard air conditioning and require an enormous amount of area. 20 holes at a depth of 50ft would handle the cooling requirements for a large residential home, but wouldn't even approach the requirements for a data center.
    One related possibility is to drill to a nearby aquifer and draw cool water, run it through a heat exchanger, then exhaust warm water into the same aquifer. Unfortunately, water overuse has been drained aquifers such that even the pumping costs would be substantial, and the aquifers will eventually be drained to the point that vacuum-based pumps can no longer draw water.
    Reply
  • rkcth - Tuesday, February 11, 2014 - link

    They are a lot more efficient at heating, but only mildly more efficient at cooling. They also are really storing heat in the ground in the summer and taking it back in the winter, so if you only store heat you can actually have a problem long-term. Your essentially using the ground as a long-term heat storage device since the ground is between 50-60 degrees depending on your area of the country, but use of the geothermal changes that temperature. An air source makes much more sense since you share the air with everyone else and it essentially just blows away. Reply
  • biohazard918 - Tuesday, February 11, 2014 - link

    Wells don't use vacuum based pumps most aquifers are much to deep for that instead you stick the pump in the bottom of the well and push the water to the service. Reply

Log in

Don't have an account? Sign up now