Quick Take

Our limited experiences to date with the Hitachi Deskstar 7K1000 have been terrific and beyond expectations. The overall performance of this drive has been phenomenal and is close enough to the WD1500ADFD Raptor drive that we consider it a worthy adversary. The Raptors are still the drives to own for benchmarking but this drive is a better overall performance value. In fact, based upon subjective testing we could seriously consider tossing this drive into the same performance sector as the WD Raptor when utilized in the typical gaming or enthusiast level machine where this drive will likely find a home.

We found the overall write performance and sustained transfer rates to be excellent and class leading in several of our test results to date. The drive even has the best overall thermal and acoustic characteristics of the high performance 7200rpm drives and absolutely blows away the Raptors in this respect. Of course, the 7K1000 does not have to contend with 10,000 rpm spindle speeds and firmware that is generally designed to extract the greatest amount of performance from the drive. However, considering the drive has a five platter design we think Hitachi has done a wonderful job in controlling thermals.

Hitachi's implementation of their Automatic Acoustic Management technology on the 7K1000 does not hinder performance in a noticeable manner and offers a significant advantage for those needing a spacious drive in a silent system. We cannot wait to test the CinemaStar version of this drive that will be designed with DVR operations in mind but for now our HTPC test bed has found a new drive. As stated in the article, we believe leaving AAM and NCQ turned on provides the best performance experience with this drive. While there may be a very slight performance advantage in certain benchmarks with AAM off (NCQ also), we feel like the benefits of having a near silent 1TB drive in our system is well worth the price of losing a few benchmark points.




The Deskstar 7K1000 is not without faults. We did find in our Nero Recode tests and to some degree in our Winstone tests that the drive does not perform as well as expected in handling large block sizes of data in sequential order. The Achilles heel of the Seagate 750GB drive was its inability to handle large files in non-sequential order. Hitachi has overcome this for this most part with a large 32 MB cache and from all apparent indications firmware that is tuned with operational balance in mind or even favoring non-sequential read/writes. A luxury it can afford due to its cache size and areal density advantages over the other drives in our test group.

Overall, we think Hitachi's Deskstar 7K1000 is the best 7200rpm drive we have tested to date. This is quite the accomplishment considering this is Hitachi's first 3.5-inch form factor drive that utilizes perpendicular recording technology. We still have significant testing left to complete on this drive that includes our full IPEAK and Application test suite with AAM and NCQ turned off or on along with RAID testing but we do not expect to find any surprises at this time. With an expected retail price of $399 or $0.40 per-Gigabyte this makes the 7K1000 a true value considering its size and performance. For these reasons, we highly recommend the purchase of this drive if you are currently looking for a high-capacity drive with performance to match.

We would like to thank Dell once again for providing our test samples and encourage you to visit StudioDell or take a look at the systems currently shipping with this impressive drive.

Actual Application Performance
Comments Locked

74 Comments

View All Comments

  • mikeg - Thursday, April 26, 2007 - link

    Its been a over a month since the article came out and I still don't see any in the retail stores or a non OEM drive. Where can I get one?? Anyone see a retail box of these drives a a retailer? I want to get a couple
    Mike
  • jojo4u - Monday, March 26, 2007 - link

    Hello Gary,

    the Hitachi datasheet refers to three idle modes using APM. The results with AAM enabled could suggest that APM is automatically engaged with AAM. So perhaups one should check the APM level with Hitachi's Feature Tool or the generic tools http://hdparm-win32.dyndns.org/hdparm/">hdparm or hddscan.
  • Gary Key - Friday, March 30, 2007 - link

    We had a lengthy meeting with the Hitachi engineers this week to go over APM and AAM modes along with the firmware that is shipping on the Dell drives. I hope to have some answers next week as testing APM capabilities on a Dell based system resulted in a slightly different behavior than our test bench. I have completed the balance of testing with various AAM/NCQ on/off combinations and some additional benchmark tests. I am hoping to update the article next week. Also, I ran acoustic tests in a different manner and will have those results available. Until, then I did find out that sitting a drive on a foam brick outside of a system and taking measurements from the top will mask some of the drives acoustic results. The majority of noise emitted from this drive comes from the bottom, not the top. ;)
  • ddarko - Monday, March 26, 2007 - link

    "However, Hitachi has informed us they have the capability to go to 250GB per-platter designs but launched at smaller capacities to ensure their reliability rate targets were met. Considering the absolute importance of data integrity we think this was a wise move."

    This sounds like an sneaky attempt by Hitachi to raise doubt about the safety of Seagate's forthcoming 1TB drive. Where is the data to support this rather bold statement that 250GB platters designs are not as capable as 200GB designs of meeting these completely unspecified "reliability rate targets"? What does that even mean? Can we infer that 150GB platter designs are even more reliable than 200GB designs? It's disappointing to see the review accept Hitachi's statement without question, going so far as to even applaud Hitachi for its approach without any evidence whatsoever to back it.
  • Lord Evermore - Thursday, March 22, 2007 - link

    While I know memory density in general isn't increasing nearly as fast as hard drive size, 32MB cache seems pretty chintzy for a top-end product. I suppose 16MB on the 750GB drives is even worse.

    My first 528MB hard drive with a 512KB cache was a 1/1007 ratio (using binary cache size, and labelled drive size which would be around binary 512MB). Other drives still had as little as 128KB cache, so they could have been as little as a 1/4028 ratio, but better with smaller drives. I think anything larger than 512MB always had 512KB.

    A 20GB drive with 2MB cache is 1/9536 ratio.

    A 100GB drive with 2MB cache is 1/47683.

    Then the jump to 8MB cache makes the ratio much better at 1/11920 for a 100GB drive (I'm ignoring the lower-cost models that had higher capacities, but still 2MB cache). Then it gets progressively worse as you get up to the 500GB size drives. Then we make another cache size jump, and the 160GB to 500GB models have a 16MB option, which is back to 1/9536 on a 160GB, to 1/29802 on a 500GB.

    The trend here being that we stick with a particular cache size as drive size increases so the ratio gets worse and worse, then we make a cache size jump which improves the ratio and it gets worse again, then we make another cache size jump again.

    Now we go to 750GB drives with 16MB cache. Now we are up to a 1/44703 ratio, only the 2nd worse ever, seems like time for another cache increase. Jumping to 32MB with a 100TB drive only makes it 1/29802. Not a very significant change despite doubling the cache again, since the drive size also increased, and it'll only get worse as they increase the drive size. Even 32MB on a 750GB drive is 1/22351, only slightly better than the 16MB/500GB flagship drives when they came out, and we don't even HAVE a 32MB/750GB drive.

    A 512MB cache would be nice. That's still not the best ratio ever, it's still 1/1862, but that's a heck of a lot better than 1/30,000th. At the very least, they need to jump those cache chip densities a lot, or use more than one. Even a single 512MB density chip would be 64MB, still not great but better.
  • Per Hansson - Sunday, March 25, 2007 - link

    Bigger caches would almost make it a necessity that you run the system on a UPS.

    Loosing 32mb of data that is yet to be written to the platters is allot, but 512mb?

    And the UPS would not take into account OS crashes...

    I'm not sure how much this would affect performance either, but a review of a SCSI drive with a SCSI controller with 2mb - 1gb of cache would answer that question well...
  • yehuda - Wednesday, March 21, 2007 - link

    Do they plan to launch a single platter variant sometime in the near future?
  • Gary Key - Wednesday, March 21, 2007 - link

    They will be releasing a 750GB variant in May. Our initial reports have the single platter drives along with the 300~500GB models coming later in the summer. I am trying to get that confirmed now.
  • DeathSniper - Tuesday, March 20, 2007 - link

    Last page..."The Achilles heal of the Seagate 750GB drive..."
    I think it should be heel, not heal ;)
  • Spacecomber - Tuesday, March 20, 2007 - link

    While this drive has enough in the way of other features to make it stand out from the crowd, I was a bit surprised to see that Hitachi hadn't upped the warranty to 5 years for this drive, which is what Seagate offers on most of their drives and WD offers on their raptors.

Log in

Don't have an account? Sign up now