Final Words

We were impressed with the performance and overclocking that we found with the 90nm 3500+. However, it is very difficult to draw any conclusions based on a single sample, so we also bought a 90nm 3000+ from another vendor. These two processors, at different speeds and from different sources, performed similarly enough to allow us to draw some broad conclusions about the performance of the new 90nm Athlon 64 processors. The new 3500+, 3200+, and 3000+ perform from 1% to 7% faster than comparable 130nm parts. We still don't know if this is the result of the die-shrink or the new DH8-D0 revision. We checked all recent Athlon 64 in the lab and we could not find a D0 A64 for comparison. We have asked AMD to shed some light on what we found in our testing, and we will report what AMD says about the performance improvements as soon as we receive the information from AMD.

Based on the Performance tests alone, there is reason to be pleased with what we know of the AMD die-shrink so far. If you also consider the fact that AMD appears to have accomplished the shrink to 90nm without an increase in heat, the process move should be considered a big success. We won't know this for sure until we see the fastest AMD chips in 90nm clothes - that is where the thermal impact of the shrink will be most visible.

The other side of the equation is headroom or overclocking. AMD enthusiasts have always seemed to flock to value chips in the AMD family. More than Intel users, AMD enthusiasts seem to always want something for nothing. It's not because they are cheap necessarily, but because AMD won them over by providing outstanding value points in their product line. In fact, many AMD users have hung on to Socket A technology long after it was significantly outperformed in the market because they could buy the Athlon XP cheap and overclock the heck out of it. Those users will love the new 90nm chips in general - and the 90nm 3000+ in particular.

They will love the new 90nm chips because they can buy a 3000+ running at 1.8GHz for less than $200 and still have a good chance of reaching 2.6GHz with very little effort with the same chip. 2.6GHz is faster than any current Athlon 64, and it is, in fact, the speed that we expect from the upcoming FX55 - the new Athlon 64 top-of-the-line. It's been a while since we've seen this kind of headroom on an AMD chip, and those who were waiting for 90nm to get a magic overclocker will get in line to buy the new 90nm 3000+.

The major impact of the new 90nm Athlon 64 chips may not be quite as obvious. Prior to the new 3000+, 3200+, and 3500+ 90nm chips, the entry point to dual-channel 939 was the $400 3500+. As a result, buyers saw the Socket 754 as the value solution for Athlon 64 shoppers, where they could buy a 754 Sempron 3100+ for about $120 or a full 64-bit 2800+ for around $140. The new 3000+ should cost about the same as the 130nm 3000+ once the new settles into the market. That will make the cost of entry for the top 939 chipset well below $200 for the CPU. Many buyers who would have bought 939 if it had been cheaper will now be able to buy 939.

This leads us to future directions for 754 and 939. Roadmaps show 754 ending in late 2005, but 5 quarters is still a lifetime in CPU sockets. AMD plans to discontinue Socket A and move all processors to Socket 754/939/940. This will likely mean that we will see even cheaper 754 processors to entice buyers who found Athlon XP prices attractive. 754 will likely move much lower before it goes away in a year or so, and 939 will also likely move down a bit further as 90nm is fully implemented and production costs go down. All-in-all, it's becoming a very good time to be in the market for an Athlon 64 processor.

Gaming Performance
Comments Locked

89 Comments

View All Comments

  • gchen77 - Wednesday, March 30, 2005 - link

    Can someone please explain the effects of raising vcore?
    I'm a relatively newbie to overclocking but I remember in the past (with Athlon XPs) raising vcore was almost certain death unless you had water cooling or your pc running in a freezer :)
  • jer - Wednesday, December 8, 2004 - link

    Wesley Fink,

    could u make a screenshot of the Memory tab in CPU-Z of the 90nm A64 3000+ cpu ??

    thx so much
  • Goomzz - Saturday, December 4, 2004 - link

    Just got my winchester 3000+ and my MSI K8N MSI Neo2 Plat. Since it's an x-mas gift can put it together until then. Putting it with Corsair XMS DDR 400 memory. I'll let you guys know how it goes.
  • Goomzz - Saturday, December 4, 2004 - link

  • romano25 - Wednesday, November 24, 2004 - link

    I dont get it...
    1)IS 3500 64 voltage 1.5 Volts?
    2)Looks like the decreased the CPu multiplier on 3500 coz by default it is 11? Why? Does it affect ur performance?
  • romano25 - Wednesday, November 24, 2004 - link

  • bobbozzo - Monday, November 22, 2004 - link

    #82: it's been answered: get a board (MSI) that allows the Memory & FSB to run at an adjustable ratio, so the memory can run slower than the FSB.
  • scius - Tuesday, November 16, 2004 - link

    Cheaper Ram Altnernatives:
    A few other readers have mentioned this, but it seems there hasn't been much of an answer (though a few worthy attempts, notably that the 3200+ is probably a better choice).

    The Question: What ram would let us run at the highest FSB for the least $.

    Obviously you can just buy the faster stuff (DDR500, or whatever), but there must be sticks that, with looser timings(small cost), can let your processor scream(huge gains) while staying relatively stable.

    Anyway, I haven't found any articles about it, but if anyone has, or has some personal experience here, i'm sure we're all eager to hear it.
  • VoodooGamez - Thursday, November 4, 2004 - link

    Great article Wesley!
  • cryptonomicon - Wednesday, November 3, 2004 - link

    great article anand!

    The 90nm process sounds like a great improvement (especially for oc).

Log in

Don't have an account? Sign up now