Energy and Pricing

Unfortunately, accurately and fairly comparing energy consumption at the system level between the S822L and other systems wasn't something we were able to do, as there were quite a few differences in the hardware configuration. For example, the IBM S822L had two SAS controllers and we had no idea how power hungry that chip under the copper heatsink was. Still there is no doubt that the dual CPU system is by far the most important power consumer when the server system is under load. In case of the IBM system, the Centaur chips will take their fair share too, but those chips are not optional. So we can only get a very rough idea how the power consumption compares.

Xeon E5 299 v3/POWER8 Comparison (System)
Feature 2x Xeon E5-2699v3 2x IBM POWER8 3.4 10c
IBM S822L
Idle 110-120W 360-380W

Running NAMD (FP)


540-560W

700-740W
Running 7-zip (Integer)

300-350W


780-800W

The Haswell core was engineered for mobile use, and there is no denying that Intel's engineers are masters at saving power at low load.


The mightly POWER8 is cooled by a huge heatsink

IBM's POWER8 has pretty advanced power management, as besides p-states, power gating cores and the associated L3-cache should be possible. However, it seems that these features were not enabled out-of-the box for some reason as idle power was quite high. To be fair, we spent much more time on getting our software ported and tuned than on finding the optimal power settings. In the limited time we had with the machine, producing some decent benchmarking numbers was our top priority.

Also, the Centaur chips consume about 16W per chip (Typical, 20W TDP) and as we had 8 of them inside our S822L, those chips could easily be responsible for consuming around 100W.

Interestingly, the IBM POWER8 consumes more energy processing integers than floating point numbers. Which is the exact opposite of the Xeon, which consumes vastly more when crunching AVX/FP code.

Pricing

Though the cost of buying a system might be only "a drop in the bucket" in the total TCO picture in traditional IT departements running expensive ERP applications, it is an important factor for almost everybody else who buys Xeon systems. It is important to note that the list prices of IBM on their website are too high. It is a bad habit of a typical tier-one OEM.

Thankfully we managed to get some "real street prices", which are between 30% (one server) and 50% (many) lower. To that end we compared the price of the S822L with a discounted DELL R730 system. The list below is not complete, as we only show the cost of the most important components. The idea is to focus on the total system price and show which components contribute the most to the total system cost.

Xeon E7v3/POWER8 Price Comparison
Feature Dell R730 IBM S822L
  Type Price Type Price
Chassis R730 N/A S822L N/A
Processor 2x E5-2697 $5000 2x POWER8 3.42 $3000
RAM 8x 16GB
DDR4 DIMM
$2150 8x 16 GB CDIMM (DDR3) $8000
PSU 2x 1100W $500 2x 1400W $1000
Disks SATA or SSD Starting at
$200
SAS HD/SSD +/- $450
Total system price (approx.)   $10k   $15k

With more or less comparable specs, the S822L was about 50% more expensive. However, it was almost impossible to make an apples-to-apples comparison. The biggest "price issue" are the CDIMMs, which are almost 4 times as expensive as "normal" RDIMMs. CDIMMs offer more as they include an L4-cache and some extra features (such as a redundant memory chip for each 9 chips). For most typical current Xeon E5 customers, the cost issue will be important. For a few, the extra redundancy and higher bandwidth will be interesting. Less important, but still significant is the fact that IBM uses SAS disks, which increase the cost of the storage system, especially if you want lots of them.

This cost issue will be much less important on most third party POWER8 systems. Tyan's "Habanero" system for example integrates the Centaur chips on the motherboard, making the motherboard more expensive but you can use standard registered DDR3L RDIMMs, which are much cheaper. Meanwhile the POWER8 processor tends to be very reasonably priced, at around $1500. That is what Dell would charge for an Intel Xeon E5-2670 (12 cores at 2.3-2.6 GHz, 120W). So while Intel's Xeon are much more power efficient than the POWER8 chips, the latter tends to be quite a bit cheaper.

Scale-Out Big Data Benchmark: ElasticSearch Comparing Benchmarks & Closing Thoughts
Comments Locked

146 Comments

View All Comments

  • Kevin G - Saturday, November 7, 2015 - link

    If all you do is just mount the network volume to use the data, then likely nothing at all. While binaries do have to be modified, the file systems themselves are written to store data in a single consistent manner. If you're wondering more if there would be some overhead in translating from LE to BE to work in memory, conceptually the answer is yes but I'd predict it be rather small and dwarfed by the time to transfer data over a network. I'd be curious to see the results.

    Ultiamtely I'd be more concerned with kernel modules for various peripherals when switching between LE and BE versions. Considering that POWER has been BE for a few generations and you did your initial testing using LE, availability shouldn't be an issue. You've been using the version which should have had the most problems in this regard.
  • spikebike - Friday, November 6, 2015 - link

    So basically power is somewhat competitive with intel's WORST price/perf chips which also happen to have the worst memory bandwidth/CPU. Seems nowhere close for the more reasonable $400-$650 xeons like the D-1520/1540 or the E5-2620 and E5-2630. Sure IBM has better memory bandwidth than the worst intels, but if you want more memory bandwidth per $ or per core then get the E5-2620.
  • JohanAnandtech - Saturday, November 7, 2015 - link

    It is definitely not an alternative for applications where performance/watt is important. As you mentioned, Intel offers a much better range of SKUs . But for transactional databases and data mining (traditional or unstructured), I see the POWER8 as very potent challenger. When you are handling a few hundreds of gigabytes of data, you want your memory to be reliable. Intel will then steer you to the E7 range, and that is where the POWER8 can make a difference: filling the niche between E5 and E7.
  • nils_ - Wednesday, November 11, 2015 - link

    Especially if you're running software that doesn't easily scale out very well these are very competitive. And nowadays even MySQL will scale-up nicely to many, many cores.
  • Gigaplex - Friday, November 6, 2015 - link

    "Less important, but still significant is the fact that IBM uses SAS disks, which increase the cost of the storage system, especially if you want lots of them."

    The Dell servers I've used had SAS controllers, and every SAS controller I've dealt with supported using SATA drives. I'm pretty sure SATA compatibility is in the SAS specification. In fact, the Dell R730 quoted in this review supports SAS drives. There shouldn't be anything stopping you from using the same drives in both servers.
  • JohanAnandtech - Saturday, November 7, 2015 - link

    You are absolutely right about SATA drives being compatible with a SAS controller. However, afaik IBM gives you only the choice between their own rather expensive SAS drives and SSDs. And maybe I have looked over it, but in general DELL let you only chose between SATA and SSDs. And this has been the trend for a while: SATA if you want to keep costs low, SSDs for everything else.
  • TomWomack - Sunday, November 8, 2015 - link

    And mounting a storage server made out of commodity hardware over a couple of lanes of 10Gbit Ethernet if you don't want to pay the exotic-hardware-supplier's markup on disc.
  • Gunbuster - Friday, November 6, 2015 - link

    SAP and IBM AIX servers... I guess if you want to blow out your entire IT budget in once easy decision...
  • Jake Hamby - Friday, November 6, 2015 - link

    I forgot to mention: VMX is better known as AltiVec (it's also called "Velocity Engine" by Apple). It's a very nice SIMD extension that was supported by Apple's G4 (Motorola/Freescale 7400/7450) and G5 (IBM PPC 970) Macs, as well as the PPC game consoles.

    It would be interesting to compare the Linux VMX crypto acceleration to code written to use the newer native AES & other instructions. In x86 terms, it'd be like SSE-optimized AES vs. the AES-NI instructions.
  • Oxford Guy - Saturday, November 7, 2015 - link

    I had a dual 450 MHz G4 system and AltiVec was quite amazing in iTunes when doing encoding. Between the second processor and the AltiVec putting things into ALAC was very fast (in comparison with other machines at the time like the G3 and the AMD machines I had).

Log in

Don't have an account? Sign up now