Overall Analysis & Conclusion

Hopefully we've managed to cover a few of the more common use-cases that are routinely encountered in daily usage on Android and get a good idea of how applications behave. We've seen some quite expected numbers for some use-cases but also stumbled on very large surprises that weren't quite as obvious. 

There were two cases that especially stood out: Browser usage and application installation and updates. It could be argued that app updates are merely a corner-case that doesn't affect a user's experience much. After all, installing an updating apps represent only an insignificant fraction of what a user does on a device. Browser usage and web-page rendering in general however, are one of the most common and often encountered scenarios on a smartphone, and here's where we encountered the largest surprises.

When I started out this piece the goals I set out to reach was to either confirm or debunk on how useful homogeneous 8-core designs would be in the real world. The fact that Chrome and to a lesser extent Samsung's stock browser were able to consistently load up to 6-8 concurrent processes while loading a page suddenly gives a lot of credence to these 8-core designs that we would have otherwise not thought of being able to fully use their designed CPU configurations. In terms of pure computational load, web-page rendering remains as one of the heaviest tasks on a smartphone so it's very encouraging to see that today's web rendering engines are able to make good use of parallelization to spread the load between the available CPU cores.

It's hard to summarize the vast amount data of the last 16 pages in an orderly and correct manner. After all we are talking about extremely varying use-cases and time-scales for each scenario. While averaging the metrics over the course of a scenario might seem a good idea at first, one has to keep in mind that this wouldn't be able to properly represent cases where load peaks for smaller durations. It's these small computational bursts which are most of the time the cause for "lags" and frame-drops. So to better represent these bottle-necks which determine the user-visible cases of application speed and performance, we rather use the 90th percentile of the CPU run-queue depths:

90th Percentile Run-Queue Depth Averages
  Little Cluster Big Cluster Little + Big
Clusters
S-Browser - AnandTech Article 2.27 2.19 3.87
S-Browser - AnandTech FP 3.12 1.25 4.15
Chrome - AnandTech FP 5.69 1.84 7.10
Chrome - BBC Frontpage 5.00 2.00 6.22
Hangouts Launch 2.77 2.11 4.01
Hangouts Writing A Message 2.80 0.05 2.57
Reddit Sync Launch 1.84 1.11 2.38
Reddit Sync Scrolling 0.95 1.03 1.46
Play Store Open & Scroll 2.87 0.78 3.45
Play Store App Updates 3.73 5.42 8.51
Camera: Launch 1.45 2.73 2.98
Camera: Still Snapshot 4.12 0.87 4.59
Camera: Video Recording 5.17 2.04 5.42
Real Racing 3 Launch 2.16 1.33 3.26
Real Racing 3 Playing 2.09 0.89 2.96
Modern Combat 5 Playing 2.09 0.73 2.68

I was wary of creating this table as it can be easily misinterpreted: Because run-queue depth averages are not directly representative of the amount of concurrent threads in a given scenario, we lose information when aggregating them for a given cluster or the whole system. This for example happens on the big cluster on the AT article load scenario where the 90th percentile of the aggregate rq-depth reaches 2.19 while in reality this figure is composed of 4 medium-high threads. Readers should thus keep in mind the actual detailed graphs of the preceding pages when reading the table.

While not directly the goal of the article, the collected data also serves as a perfect case-study for heterogeneous big.LITTLE SoCs. We've long seen discussions concerning what the "ideal" big.LITTLE configuration would be. There's several angles to this: the most optimal little and big cluster core counts, and whether we're aiming for performance or power efficiency in each case. In terms of low- to medium-performance threads, we've had several cases where 4 little cores weren't enough. Web page rendering in Chrome in particular seems to be the killer use-case where actually having two clusters of highly efficient cores makes sense.

On the high-performance "big" cluster side, the discussion topic is more about whether 2 or 4 core designs make more sense. I think the decision here is not about performance but rather about power efficiency. A 2-core big-cluster design would provide more than enough performance for most use-cases, but as we've seen throughout our testing during interactive use it's more common than not to have 2+ threads placed on the big cluster. So while a 2-core design could handle bursts where ~3-4 threads are placed onto the big cluster, the CPUs would need to scale up higher in frequency to provide the same performance compared to a wider 4-core design. And scaling up higher in frequency has a quadratically detrimental effect on power efficiency as we need higher operating voltages. At the end of the day I think the 4 big core designs are not only the better performing ones but also the more efficient ones. 

This puts one particular vendor in quite of an interesting position: MediaTek. Even if one wouldn't be able to fully saturate a cluster one can still derive power efficiency advantages due to the fact that two small clusters would be able to operate at separate frequencies and thus efficiency points. I've encountered enough scenarios that would in theory fit the Helio X20's tri-cluster design that I'm starting to think that such a design would actually be a very smart choice for current Android devices.

What about more traditional SoC configurations? As mentioned earlier symmetric 8-core designs such as MediaTek's Helio X10 would, contrary to one's expectations, be seemingly able to take advantage of their higher core counts. So while it would be preferable to have higher performance cores such as Cortex A57's or A72's, one has to keep in mind the target market of these architectures are limited to higher-end SoCs. The 8 little-core designs are mostly targeted at the entry- and mid-level where adding a second Cortex A53 cluster can be very cheap way of still providing benefits in every-day usages, particularly in web-browsing.

What is clear though albeit there are corner-cases, is that the vast majority of applications do seem to be optimal for quad-core SoCs. This is why traditional 4-core and 4.4 big.LITTLE designs still appear to make the most sense in terms providing a balanced configuration and making most use of the hardware at hand. For big.LITTLE, even if there were no use-cases where all cores are concurrently used, it's not a big deal as what we are aiming for in heterogeneous systems is power efficiency gains.

This is also the point of the discussion where the debate of the potential detrimental effect of having more cores comes into play: The fact that a SoC has more cores does not automatically mean it uses more power. As demonstrated in the data, modern power management is advanced enough to make extensive use of fine-grained power-gated idle states, thus eliminating any overhead there might be of simply having more physical cores on the silicon. If there are cases (And as we've seen, there are!) which make use of more cores then this should be seen purely as an added bonus and icing on the cake. 

What about narrow CPU-core number design philosophies? Would such designs make sense on Android? This is probably another question that our readers will ask themselves when looking at the data. Apple and recently Nvidia with their Denver architecture both choose to keep going the route of employing large 2-core designs that are strong in their single-threaded performance but fall behind in terms of multi-threaded performance.

While for Apple it can be argued that we're dealing with a very different operating system and it is likely iOS applications are less threaded than their Android counter-parts. But there are cases where this doesn't need to be necessarily hold true: For example browser rendering engines, as demonstrated, can be multi-threaded if adapted to do so. Native high-end games which already make use of multiple threads are also unlikely to differ in their threading logic between the platforms.

While such narrow CPU-core designs would have higher performance at a given frequency - it is not a direct indicator of the actual performance/W efficiency that a single thread would have on these chipsets. We still haven't had a chance to make a proper apples-to-apples comparison for these architectures so we're limited to theorycrafting with the data we currently have available to us:

What we see in the use-case analysis is that the amount of use-cases where an application is visibly limited due to single-threaded performance seems be very limited. In fact, a large amount of the analyzed scenarios our test-device with Cortex A57 cores would rarely need to ramp up to their full frequency beyond short bursts (Thermal throttling was not a factor in any of the tests). On the other hand, scenarios were we'd find 3-4 high load threads seem not to be that particularly hard to find, and actually appear to be an a pretty common occurence. For mobile, the choice seems to be obvious due to the power curve implications. In scenarios where we're not talking about having loads so small that it becomes not worthwhile to spend the energy to bring a secondary core out of its idle state, one could generalize that if one is able to spread the load over multiple CPUs, it will always preferable and more efficient to do so. 

In the end what we should take away from this analysis is that Android devices can make much better use of multi-threading than initially expected. There's very solid evidence that not only are 4.4 big.LITTLE designs validated, but we also find practical benefits of using 8-core "little" designs over similar single-cluster 4-core SoCs. For the foreseeable future it seems that vendors who rely on ARM's CPU designs will be well served with a continued use of 4.4 b.L designs. Only MediaTek seems to fall out of the norm here with its upcoming X20 SoC, which I'm definitely looking forward to see as to how it behaves in the real-world. We'll also see some vendors revert back to quad-core designs in their custom architectures - while we've yet to get a better picture of how these will behave in terms of performance and power, I think that 4 cores will be a quite reasonable target and sweet-spot for vendors to aim for.

Games: Modern Combat 5 Playing
Comments Locked

157 Comments

View All Comments

  • lilmoe - Tuesday, September 1, 2015 - link

    "If 4 threads running on 4 small cores at 50% FMax can be done by one big core at FMin without wasting any cycles, the advantage actually goes to the big core configuration."

    That's hardly a real-world or even valid comparison. Things aren't measured that way.

    On the chip level, it all boils down to a direct comparison, which by itself isn't telling much because the core configuration of two different chips isn't usually the only difference. Other metrics start to kick in. Those arguing dual-core wide cores are thinking iOS, which by itself invalidates the comparison. We're talking Android here.

    On the software side, real life scenarios aren't easy to quantify.

    This article simply states the following:

    - Android currently has relatively good parallelism capabilities for common workloads,
    - Therefore, there is merit in 8 small core and 4x4 big.LITTLE configurations from an efficiency perspective. The latter being beneficial for comparable performance with custom core designs when needed.

    Most users are either browsing, texting, or on social media. Most of the games played, BY FAR, are the less demanding ones that usually don't trigger the big cores.

    I've said this before in reply to someone else. When QC and Samsung release their custom quad core designs, which do honestly believe would me more power efficient, those chips as-is? Or the same chips in addition to little cores in big.LITTLE (provided they can be properly configured that way).

    A wise man once said: "efficiency is king".
  • lilmoe - Tuesday, September 1, 2015 - link

    You guys are deliberately stretching the scope in which the findings of this article applies to.

    Just stop.

    It has been clearly stated that this only applies to how Android (and Android Apps) manage to benefit from more cores in terms of efficiency. It was clearly stated that this doesn't apply to other operating systems "iOS in particular".
  • Nenad - Tuesday, September 1, 2015 - link

    I agree.

    Especially since any app designed for performance will launch as many threads as needed to use available cores. So looking if "there are more than 4 threads active on 4+4 core CPU" can be misleading. If you run those tests on 2 core CPU, would number of threads remain same or be reduced? How about 10 core CPU?

    In other words, only comparing performance and power usage (and not number of threads) would tell us if 4+4 is better than 4 or than 2 cores. Problem with that is finding different CPUs on same technology platform (to ensure only number of cores is different, and not 20nm vs 28nm vs different process etc).

    Barring that, comparison of power performance per cost among 4+4 vs 4 vs 2 is also better indicator than comparing number of threads.

    TD;DR: it is 'easy' to have more threads than CPU cores, but it does not indicate neither performance nor power usage.
  • ThisIsChrisKim - Tuesday, September 1, 2015 - link

    The question being answered was this, "On the following pages we’ll have a look at about 20 different real-world often encountered use-cases where we monitor CPU frequency, power states and scheduler run-queues. What we are looking for specifically is the run-queue depth spikes for each scenario to see just how many threads are spawned during the various scenarios."

    It was simply assessing if multiple cores were actually used in the little-big design. Not a comparison of different designs.
  • Aenean144 - Tuesday, September 1, 2015 - link

    Yes, that was what the article was trying to find out, but it didn't answer the question of whether 4-core and 8-core designs are better than 2 core or 3 core designs. That's been the contention of the "can't use that many cores" mantra.

    All this article has explained is that the OS scheduler can distribute threads across a lot of cores, something hardly anyone has a problem with.

    What I'd like to see is the performance or user experience difference between 2-core, 4-core, and 8-core designs, all using the same SoC. There's nothing magic about this. In PCs today, we've largely settled on 2-core and 4-core designs for consumer systems. 6-core and 8-core systems for gaming rigs, but that's largely an artifact of Intel's SKUs.

    So, if I believe the marketing, these smartphones really need to have 8-core designs when my laptop or desktop, capable of handling an order of magnitude more computation needs, with just 2-cores or 4-cores?
  • prisonerX - Tuesday, September 1, 2015 - link

    You're missing the point. Your desktop is faster because it uses much more power. Mobile phones have more cores because it's more efficient to use more lower power cores than fewer high power cores.
  • Aenean144 - Tuesday, September 1, 2015 - link

    My desktop and laptop are power limited at their respective TDPs, and it's been this way for a very long time. If more cores were the answer, why are we sitting at mostly 2-core and 4-core CPUs in the PC space?

    All this stuff isn't new whatsoever, and the PC space went through the same core-count race 10 years ago. There has to be something systematically different such that Intel went down this path while ARM smartphones are in the midst of a core-count race.

    I've read that it could be an economics thing as ARMH gets money on a per-core basis while spending money on complicated DVFS schemas and high IPC cores isn't worth it for them. Maybe in the PC space, we don't need the performance anymore.
  • mkozakewich - Wednesday, September 2, 2015 - link

    It's because we're always fighting for quicker single-thread work. A lot of things can be parallelized, but there are also a lot of things today that aren't. I agree that Intel should try out some kind of big.LITTLE thing with a couple Atom cores and a Core M, just to see how it runs.
  • prisonerX - Wednesday, September 2, 2015 - link

    It's Intel's backward looking strategy. They're competing in high power/high single thread performance because they can win that with legacy desktop software and a legacy CPU architecture.

    Meanwhile, the rest of the world is going low power multithreaded, because that's the future. Going forward it's the only way to increase performance with low power. Google are correctly pushing an aggressively multithreaded software architecture.

    Intel have already hit the wall with single threaded performance. They can win the present but not the future. Desktops aren't moving forward because no-one cares about them except gamers, and gamers largely don't care about power usage because they don't run on batteries.
  • Frihed - Friday, September 4, 2015 - link

    In the desktop, the costs of making a chip matters much more, as the bigger chips are some times more expensive than a hole mobile device. The costs of putting more cores in the chip counts there.

Log in

Don't have an account? Sign up now