Compiling with gcc

A more real world benchmark to test the integer processing power of our Xeon servers is a Linux kernel compile. Although few people compile their own kernel, compiling other software on servers is a common task and this will give us a good idea of how the CPUs handle a complex build.

To do this we have downloaded the 3.11 kernel from kernel.org. We then compiled the kernel with the "time make -jx" command, where x is the maximum number of threads that the platform is capable of using. To make the graph more readable, the number of seconds in wall time was converted into the number of builds per hour.

Linux Kernel Compile

The Xeon D delivers at least 65% better performance than the Xeon E3s. Considering the low TDP, that is pretty amazing. The Xeon E5 delivers 30% more with 50% more cores - as the Xeon E5 is twice as expensive, the Xeon D holds a massive performance per dollar advantage. The brawny Broadwell cores of the Xeon D compile no less than 3.7 times faster than the small Silvermont cores of the Atom, meaning that compiling definitely favors the more sophisticated cores. 

If you regularly compile large projects, the Xeon D is one of the best choices you have - even compared to a highly clocked Core i7 solutions. The cheaper quad core i7s will perform like the Xeon E3-1240, the equally priced ($583) i7-5930k will do about 50% better, still below the Xeon D. The Xeon D offers you integrated dual 10 Gb Ethernet, SATA, USB, which should offer lower latency. The Xeon D can also support twice as much memory (128 GB vs 64 GB) and offer you a much lower power bill (45W vs 140W TDP), making hardware decisions around compilation based projects an easy choice to make.

Multi-Threaded Integer Performance HPC: Fluid Dynamics
Comments Locked

90 Comments

View All Comments

  • extide - Tuesday, June 23, 2015 - link

    That's ECC Registered, -- not sure if it will take that, but probably, although you dont need registered, or ECC.
  • nils_ - Wednesday, June 24, 2015 - link

    If you want transcoding, you might want to look at the Xeon E3 v4 series instead, which come with Iris Pro graphics. Should be a lot more efficient.
  • bernstein - Thursday, June 25, 2015 - link

    for using ECC UDIMMs, a cheaper option would be an i3 in a xeon e3 board.
  • psurge - Tuesday, June 23, 2015 - link

    Has Intel discussed their Xeon-D roadmap at all? I'm wondering in particular if 2x25GbE is coming, whether we can expect a SOC with higher clock-speed or more cores (at a higher TDP), and what the timeframe is for Skylake based cores.
  • nils_ - Tuesday, June 23, 2015 - link

    Is 25GbE even a standard? I've heard about 40GbE and even 56GbE (matching infiniband), but not 25.
  • psurge - Tuesday, June 23, 2015 - link

    It's supposed be a more cost effective speed upgrade to 10GbE than 40GbE (it uses a single 25Gb/s serdes lane, as used in 100GbE, vs 4 10Gb/s lanes), and IIRC is being pushed by large datacenter shops like Google and Microsoft. There's more info at http://25gethernet.org/. I'm not sure where things are in the standardization process.
  • nils_ - Wednesday, June 24, 2015 - link

    It also has an interesting property when it comes to using a breakout cable of sorts, you could connect 4 servers to 1 100GbE port (this is already possible with 40GbE which can be split into 4x10GbE).
  • JohanAnandtech - Wednesday, June 24, 2015 - link

    Considering that the Xeon D must find a home in low power high density servers, I think dual 10 Gbit will be standard for a while. Any idea what 25/40 Gbit PHY would consume? Those 10 Gbit PHYs already need 3 Watt in idle, probably around 6-8W at full speed. That is a large chunk of the power budget in a micro/scale out server.
  • psurge - Wednesday, June 24, 2015 - link

    No I don't, sorry. But, I thought SFP+ with SR optics (10GBASE-SR) was < 1W per port, and that SFP+ direct attach (10GBASE-CR) was not far behind? 10GBASE-T is a power hog...
  • pjkenned - Tuesday, June 23, 2015 - link

    Hey Johan - just re-read. A few quick thoughts:
    First off - great piece. You do awesome work. (This is Patrick @ ServeTheHome.com btw)

    Second - one thing should probably be a bit clearer - you were not using a Xeon D-1540. It was a ES Broadwell-DE version at 2.0GHz. The shipping product has 100MHz higher clocks on both base and max turbo. I did see a 5% or so performance bump from the first ES version we tested to the shipping parts. The 2.0GHz parts are really close to shipping spec though. One both of my pre-release Xeon D and all of the post-release Xeon D systems was nearly identical.

    Those will not change your conclusions but does make the actual Intel Xeon D-1540 a bit better than the one you tested. LMK if you want me to set aside some time on a full speed version on a Xeon D-1540 system for you.

Log in

Don't have an account? Sign up now