Battlefield 4

Our latest addition to our benchmark suite and our current major multiplayer action game of our benchmark suite is Battlefield 4, DICE’s 2013 multiplayer military shooter. After a rocky start, Battlefield 4 has finally reached a point where it’s stable enough for benchmark use, giving us the ability to profile one of the most popular and strenuous shooters out there. As these benchmarks are from single player mode, based on our experiences our rule of thumb here is that multiplayer framerates will dip to half our single player framerates, which means a card needs to be able to average at least 60fps if it’s to be able to hold up in multiplayer.

Battlefield 4 - 3840x2160 - Ultra Quality - 0x MSAA

Battlefield 4 - 3840x2160 - Medium Quality

Battlefield 4 - 2560x1440 - Ultra Quality

Battlefield 4 - 1920x1080 - Ultra Quality

Battlefield 4 is one of our tougher games, especially with the bar set at 60fps to give us enough headroom for multiplayer performance. To that end the GTX 980 turns in another solid performance, though the dream of averaging 60fps at 1440p Ultra is going to have to wait just a bit longer to be answered.

Overall on a competitive basis the GTX 980 looks very strong. Against the GTX 780 Ti it further improves on performance by 8-13%, 30%+ against GTX 780, and 66% against GTX 680. Similarly it fares well against AMD’s cards – even with their Mantle performance advantage – with the exception of one case: 4K at Medium quality. With maximum quality settings, at all resolutions the GTX 980 can outperform AMD’s best by around 15%. But in the case of 4K Medium, with the lesser shader overhead in particular the R9 290XU gets to pull ahead thanks to Mantle. At this point NVIDIA is losing by just 4%, but it goes to show how close the race between these two cards is going to be at times and why AMD is never too far behind NVIDIA in several of these games.

In any case for Ultra quality you’re looking at the GTX 980 being enough for 1080p and even 1440p if you flex the 60fps rule a bit. 4K at these settings though is going to be the domain of multi-GPU setups.

Battlefield 4 - Delta Percentages

Battlefield 4 - Surround/4K - Delta Percentages

Meanwhile delta percentage performance is extremely strong here. Everyone, incuding the GTX 980, is well below 3%.

Bioshock Infinite Crysis 3
Comments Locked

274 Comments

View All Comments

  • Frenetic Pony - Friday, September 19, 2014 - link

    This is the most likely thing to happen, as the transition to 14nm takes place for intel over the next 6 months those 22nm fabs will sit empty. They could sell capacity at a similar process to TSMC's latest while keeping their advantage at the same time.
  • nlasky - Friday, September 19, 2014 - link

    Intel uses the same Fabs to produce 14nm as it does to produce 22nm
  • lefty2 - Friday, September 19, 2014 - link

    I can see Nvidia switching to Intel's 14nm, however Intel charges a lot more than TSMC for it's foundry services (because they want to maintain their high margins). That would mean it's only economical for the high end cards
  • SeanJ76 - Friday, September 19, 2014 - link

    What a joke!!!! 980GTX doesn't even beat the previous year's 780ti??? LOL!! Think I'll hold on to my 770 SC ACX Sli that EVGA just sent me for free!!
  • Margalus - Friday, September 19, 2014 - link

    uhh, what review were you looking at? or are you dyslexic and mixed up the results between the two cards?
  • eanazag - Friday, September 19, 2014 - link

    Nvidia would get twice as many GPUs per wafer on a 14nm process than 28nm. Maxwell at 14nm would blow Intel integrated and AMD out of the water in performance and power usage.

    That simply isn't the reality. Samsung has better than 28nm processes also. This type of partnership would work well for Nvidia and AMD to partner with Samsung on their fabs. It makes more sense than Intel because Intel views Nvidia as a threat and competitor. There are reasons GPUs are still on 28nm and it is beyond process availability.
  • astroidea - Friday, September 19, 2014 - link

    They'd actually get four times more since you have to considered the squared area. 14^2*4=28^2
  • emn13 - Saturday, September 20, 2014 - link

    Unfortunately, that's not how it works. A 14nm process isn't simply a 28nm process scaled by 0.5; different parts are scaled differently, and so the overall die area savings aren't that simple to compute.

    In a sense, the concept of a "14nm" process is almost a bit of a marketing term, since various components may still be much larger than 14nm. And of course, the same holds for TSMC's 28nm process... so a true comparison would require more knowledge that you or I have, I'm sure :-) - I'm not sure if intel even releases the precise technical details of how things are scaled in the first place.
  • bernstein - Friday, September 19, 2014 - link

    no because intel is using their 22nm for haswell parts... the cpu transition ends in a year with the broadwell xeon-ep... at which point almost all the fabs will either be upgraded or upgrading to 14nm and the rest used to produce chipsets and other secondary die's
  • nlasky - Saturday, September 20, 2014 - link

    yes but they use the same fabs for both processes

Log in

Don't have an account? Sign up now