Benchmark Configuration and Methodology

This review - due to time constraints and a failing RAID controller inside our iSCSI storage - concentrates mostly on the performance and performance/watt of server applications running on top of Ubuntu Server 14.04 LTS.  To make things more interesting, we tested 4 different SKUs and included the previous generation Xeon E5-2697v2 (high end Ivy Bridge EP), Xeon E5-2680v2 (mid range Ivy Bridge EP) and E5-2690 (high end Sandy Bridge EP). All test have been done with the help of Dieter and Wannes of the Sizing Servers Lab

We include the Opteron "Piledriver" 6376 server (configuration here) only for nostalgia and informational purposes. It is clear that AMD does not actively competes in the high end and midrange server CPU market anno 2014. 

Intel's Xeon E5 Server – "Wildcat Pass" (2U Chassis)

CPU

Two Intel Xeon processor E5-2699 v3 (2.3GHz, 18c, 45MB L3, 145W)
Two Intel Xeon processor E5-2695 v3 (2.3 GHz, 14c, 35MB L3, 120W)
Two Intel Xeon processor E5-2667 v3 (3.2 GHz, 8c, 20MB L3, 135W)
Two Intel Xeon processor E5-2650L v3 (1.8GHz, 12c, 30MB L3, 65W)

RAM 128GB (8x16GB) Samsung M393A2G40DB0 (RDIMM)
256GB (8x32GB) Samsung M386A4G40DM0 (LRDIMM)
Internal Disks 2x Intel MLC SSD710 200GB
Motherboard Intel Server Board Wilcat pass
Chipset Intel Wellsburg B0
BIOS version Beta BIOS dating August the 9th, 2014
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

The 32 GB LRDIMMs were added to the review thanks to the help of IDT and Samsung Semiconductor.  

The picture above gives you a look inside the Xeon E5-2600v3 based server. 

Supermicro 6027R-73DARF (2U Chassis)

CPU Two Intel Xeon processor E5-2697 v2 (2.7GHz, 12c, 30MB L3, 130W)
Two Intel Xeon processor E5-2680 v2 (2.8GHz, 10c, 25MB L3, 115W)
Two Intel Xeon processor E5-2690 (2.9GHz, 8c, 20MB L3, 135W)
RAM 128GB (8x16GB) Samsung M393A2G40DB0
Internal Disks 2x Intel MLC SSD710 200GB
Motherboard Supermicro X9DRD-7LN4F
Chipset Intel C602J
BIOS version R 3.0a (December the 6th, 2013)
PSU Supermicro 740W PWS-741P-1R (80+ Platinum)

All C-states are enabled in both the BIOS.

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) powerline. The room temperature is monitored and kept at 23°C by our Airwell CRACs. We use the Racktivity ES1008 Energy Switch PDU to measure power consumption. Using a PDU for accurate power measurements might seem pretty insane, but this is not your average PDU. Measurement circuits of most PDUs assume that the incoming AC is a perfect sine wave, but it never is. However, the Rackitivity PDU measures true RMS current and voltage at a very high sample rate: up to 20,000 measurements per second for the complete PDU.

Positioning: SKUs and Servers Memory Subsystem: Bandwidth
Comments Locked

85 Comments

View All Comments

  • martinpw - Monday, September 8, 2014 - link

    There is a nice tool called i7z (can google it). You need to run it as root to get the live CPU clock display.
  • kepstin - Monday, September 8, 2014 - link

    Most Linux distributions provide a tool called "turbostat" which prints statistical summaries of real clock speeds and c state usage on Intel cpus.
  • kepstin - Monday, September 8, 2014 - link

    Note that if turbostat is missing or too old (doesn't support your cpu), you can build it yourself pretty quick - grab the latest linux kernel source, cd to tools/power/x86/turbostat, and type 'make'. It'll build the tool in the current directory.
  • julianb - Monday, September 8, 2014 - link

    Finally the e5-xxx v3s have arrived. I too can't wait for the Cinebench and 3DS Max benchmark results.
    Any idea if now that they are out the e5-xxxx v2s will drop down in price?
    Or Intel doesn't do that...
  • MrSpadge - Tuesday, September 9, 2014 - link

    Correct, Intel does not really lower prices of older CPUs. They just gradually phase out.
  • tromp - Monday, September 8, 2014 - link

    As an additional test of the latency of the DRAM subsystem, could you please run the "make speedup" scaling benchmark of my Cuckoo Cycle proof-of-work system at https://github.com/tromp/cuckoo ?
    That will show if 72 threads (2 cpus with 18 hyperthreaded cores) suffice to saturate the DRAM subsystem with random accesses.

    -John
  • Hulk - Monday, September 8, 2014 - link

    I know this is not the workload these parts are designed for, but just for kicks I'd love to see some media encoding/video editing apps tested. Just to see what this thing can do with a well coded mainstream application. Or to see where the apps fades out core-wise.
  • Assimilator87 - Monday, September 8, 2014 - link

    Someone benchmark F@H bigadv on these, stat!
  • iwod - Tuesday, September 9, 2014 - link

    I am looking forward to 16 Core Native Die, 14nm Broadwell Next year, and DDR4 is matured with much better pricing.
  • Brutalizer - Tuesday, September 9, 2014 - link

    Yawn, the new upcoming SPARC M7 cpu has 32 cores. SPARC has had 16 cores for ages. Since some generations back, the SPARC cores are able to dedicate all resources to one thread if need be. This way the SPARC core can have one very strong thread, or massive throughput (many threads). The SPARC M7 cpu is 10 billion transistors:
    http://www.enterprisetech.com/2014/08/13/oracle-cr...
    and it will be 3-4x faster than the current SPARC M6 (12 cores, 96 threads) which holds several world records today. The largest SPARC M7 server will have 32-sockets, 1024 cores, 64TB RAM and 8.192 threads. One SPARC M7 cpu will be as fast as an entire Sunfire 25K. :)

    The largest Xeon E5 server will top out at 4-sockets probably. I think the Xeon E7 cpus top out at 8-socket servers. So, if you need massive RAM (more than 10TB) and massive performance, you need to venture into Unix server territory, such as SPARC or POWER. Only they have 32-socket servers capable of reaching the highest performance.

    Of course, the SGI Altix/UV2000 servers have 10.000s of cores and 100TBs of RAM, but they are clusters, like a tiny supercomputer. Only doing HPC number crunching workloads. You will never find these large Linux clusters run SAP Enterprise workloads, there are no such SAP benchmarks, because clusters suck at non HPC workloads.

    -Clusters are typically serving one user who picks which workload to run for the next days. All SGI benchmarks are HPC, not a single Enterprise benchmark exist for instance SAP or other Enterprise systems. They serve one user.

    -Large SMP servers with as many as 32 sockets (or even 64-sockets!!!) are typically serving thousands of users, running Enterprise business workloads, such as SAP. They serve thousands of users.

Log in

Don't have an account? Sign up now