SKUs and Pricing

Before we start with the benchmarks, let's first see what you get for your money. To reduce the clutter, we have not listed all of the SKUs but have tried to include useful points of comparison. Also note that we are not comparing pricing or performance with AMD at this point, as AMD has not updated its server CPU offerings for almost 2 years. The Steamroller architecture was very promising and addressed many of the bottlenecks we discovered in the earlier Opteron 6200, but unfortunately it was never made into a high end server CPU. So basically, Intel's only competition right now is the previous generation Xeons, which means Intel has to convince server buyers that upgrading to the latest Xeon pays off.

Intel Xeon E5 v2 versus v3 2-socket SKU Comparison
Xeon E5 Cores/
TDP Clock Speed
Price Xeon E5 Cores/
TDP Clock Speed
High Performance (20 – 30MB LLC) High Performance (35-45MB LLC)
          2699 v3 18/36 145W 2.3-3.6 $4115
          2698 v3 16/32 135W 2.3-3.6 $3226
2697 v2 12/24 130W 2.7-3.5 $2614 2697 v3 14/28 145W 2.6-3.6 $2702
2695 v2 12/24 115W 2.4-3.2 $2336 2695 v3 14/28 120W 2.3-3.3 $2424
          "Advanced" (20-30MB LLC)
2690 v2 10/20 130W 3-3.6 $2057 2690 v3 12/24 135W 2.6-3.5 $2090
2680 v2 10/20 115W 2.8-3.6 $1723 2680 v3 12/24 120W 2.5-3.3 $1745
2660 v2 10/20 115W 2.2-3.0 $1389 2660 v3 10/20 105W 2.6-3.3 $1445
2650 v2 8/16 95W 2.6-3.4 $1166 2650 v3 10/20 105W 2.3-3.0 $1167
Midrange (10 – 20MB LLC) Midrange (15-25MB LLC)
2640 v2 8/16 95W 2.0-2.5 $885 2640 v3 8/16 90W 2.6-3.4 $939
2630 v2 6/12 80W 2.6-3.1 $612 2630 v3 8/16 85W 2.4-3.2 $667
Frequency optimized (15 – 25MB LLC) Frequency optimized (10-20MB LLC)
2687W v2 8/16 150W 3.4-4.0 $2108 2687W v3 10/20 160W 3.1-3.5 $2141
2667 v2 8/16 130W 3.3-4.0 $2057 2667 v3 8/16 135W 3.2-3.6 $2057
2643 v2 6/12 130W 3.5-3.8 $1552 2643 v3 6/12 135W 3.4-3.7 $1552
2637 v2 4/12 130W 3.5-3.8 $996 2637 v3 4/8 135W 3.5-3.7 $996
Budget (15MB LLC) Budget (15MB LLC)
2609 v2 4/4 80W 2.5 $294 2609 v3 6/6 85W 1.9 $306
2603 v2 4/4 80W 1.8 $202 2603 v3 6/6 85W 1.6 $213
Power Optimized (15 – 25MB LLC) Power Optimized (20-30MB LLC)
2650L v2 10/20 70W 1.7-2.1 $1219 2650L v3 12/24 65W 1.8-2.5 $1329
2630L v2 6/12 70W 2.4-2.8 $612 2630L v3 8/16 55W 1.8-2.9 $612

At the top of the product stack is the new E5-2699 v3, and it's priced accordingly: over $4000 for the most cores Intel has ever put in a Xeon processor. TDP has also gone up compared to the previous generation's top SKU, but for six additional cores that's probably reasonable.

At first glance, the 2695 v3 looks interesting for the performance hungry as it the cheapest "HCC" (High Core Count) option. You get the largest die with the two memory controllers, 35MB LLC, two rings, and TDP is limited to 120W. Of course the question is how well Turbo Boost will compensate for the relatively low base clock.

For those looking for a good balance between price/performance and power, the 2650L v3 offers a 100MHz higher clock, much higher Turbo Boost, two extra cores, and a slightly lower TDP for about $100 more. This SKU looks very tempting for people who do not need the ultimate in processing power, e.g. those looking for a host for their VMs.

Lastly, there is the 2667 v3 which has a high base clock (3.2) and a still reasonable TDP of 135W for all applications that need processing power but do not scale beyond a certain core count.

Those are the SKUs that we have included in this review, so let's see how they fare.

Improved Support for LRDIMMs Benchmark Configuration and Methodology
Comments Locked


View All Comments

  • coburn_c - Monday, September 8, 2014 - link

    MY God - It's full of transistors!
  • Samus - Monday, September 8, 2014 - link

    I wish there were socket 1150 Xeon's in this class. If I could replace my quad core with an Octacore...
  • wireframed - Saturday, September 20, 2014 - link

    If you can afford an 8-core CPU, I'm sure you can afford a S2011 board - it's like 15% of the price of the CPU, so the cost relative to the rest of the platform is negligible. :)
    Also, s1150 is dual-channel only. With that many cores, you'll want more bandwidth.
  • peevee - Wednesday, March 25, 2015 - link

    For many, if not most workloads it will be faster to run 4 fast (4GHz) cores on 4 fast memory channels (DDR4-2400+) than 8 slow (2-3GHz) cores on 2 memory channels. Of course, if your workload consists of a lot of trigonometry (sine/cosine etc), or thread worksets completely fit into 2nd level cache (only 256k!), you may benefit from 8/2 config. But if you have one of those, I am eager to hear what it is.
  • tech6 - Monday, September 8, 2014 - link

    The 18 core SKU is great news for those trying to increase data center density. It should allow VM hosts with 512Gb+ of memory to operate efficiently even under demanding workloads. Given the new DDR4 memory bandwidth gains I wonder if the 18 core dual socket SKUs will make quad socket servers a niche product?
  • Kevin G - Monday, September 8, 2014 - link

    In fairness, quad socket was already a niche market.

    That and there will be quad socket version of these chips: E5-4600v3's.
  • wallysb01 - Monday, September 8, 2014 - link

    My lord. My thought is that this really shows that v3 isn’t the slouch many thought it would be. An added 2 cores over v2 in the same price range and turbo boosting that appears to functioning a little better, plus the clock for clock improvements and move to DDR4 make for a nice step up when all combined.

    I’m surprised Intel went with an 18 core monster, but holy S&%T, if they can squeeze it in and make it function, why not.
  • Samus - Monday, September 8, 2014 - link

    I feel for AMD, this just shows how far ahead Intel is :\
  • Thermogenic - Monday, September 8, 2014 - link

    Intel isn't just ahead - they've already won.
  • olderkid - Monday, September 8, 2014 - link

    AMD saw Intel behind them and they wondered how Intel fell so far back. But really Intel was just lapping them.

Log in

Don't have an account? Sign up now